Menhirs in the desert regions of a Poisson Point Process

Nathanaël Enriquez

(Université Paris-Saclay)

Joint work with Pierre Calka and Yann Demichel

Let us consider a uniform Poisson Point Process in the plane

The iconic result in this subject says that the mean number of vertices of a cell is equal to 6

1 - When the underlying PPP has a uniform intensity outside a large region
An example: the map of the airports over the world

Copyright: Jason Davies

A simulation with an isolated point : two types of cell

1. The number of vertices of the large cell

Theorem. (P. Calka, Y. Demichel, E. 2021)
When λ goes to ∞, the intensity of the projection of the vertices on ∂K is asymptotically

$$
C \cdot \lambda^{-1 / 3} \cdot \frac{\operatorname{dist}(O, S)^{1 / 3}}{r_{s}^{2 / 3}} d s
$$

where r_{s} is the curvature of ∂K at point s, and $d s$ is the Lebesgue measure on ∂K.
2. The Voronoi diagram of a uniform PPP outside the upper half-plane

Goal: Study the asymptotic properties of a cell conditioned to have its highest point at $(0, \lambda)$, when $\lambda \rightarrow \infty$.

Some familiar picture?

Goal: Study the asymptotic properties of cathedrals...

Zooming on a cell

Two steps:

Step 1: the starting point

Step 2: the evolution of the boundary

2a. The 3 bisecting lines starting from the point $(0, \lambda)$, conditioned to be a vertex

Proposition. As λ goes to infinity, the quadruplet $\left(R, \Theta_{l}, \Theta_{c}, \Theta_{r}\right)$ converges in distribution to a distribution proportional to

$$
\exp \left(-\frac{4 \sqrt{2}}{3} r \frac{3}{2}\right)\left(\theta_{c}-\theta_{l}\right)\left(\theta_{r}-\theta_{c}\right)\left(\theta_{r}-\theta_{l}\right) \mathbf{1}_{-\sqrt{2 r}<\theta_{l}<\theta_{c}<\theta_{r}<\sqrt{2 r}} .
$$

In other words, the limiting quadruplet $\left(R, \Theta_{l}, \Theta_{c}, \Theta_{r}\right) \sim\left(G^{\frac{2}{3}}, G^{\frac{1}{3}} U_{(1)}, G^{\frac{1}{3}} U_{(\epsilon)}, G^{\frac{1}{3}} U_{(6)}\right)$ where G is Gamma distributed and

2a. The 3 bisecting lines starting from the point $(0, \lambda)$, conditioned to be a vertex

Proposition. As λ goes to infinity, the quadruplet $\left(R, \Theta_{l}, \Theta_{c}, \Theta_{r}\right)$ converges in distribution to a distribution proportional to

$$
\exp \left(-\frac{4 \sqrt{2}}{3} r \frac{3}{2}\right)\left(\theta_{c}-\theta_{l}\right)\left(\theta_{r}-\theta_{c}\right)\left(\theta_{r}-\theta_{l}\right) \mathbf{1}_{-\sqrt{2 r}<\theta_{l}<\theta_{c}<\theta_{r}<\sqrt{2 r}} .
$$

In other words, the limiting quadruplet $\left(R, \Theta_{l}, \Theta_{c}, \Theta_{r}\right) \sim\left(G^{\frac{2}{3}}, G^{\frac{1}{3}} U_{(1)}, G^{\frac{1}{3}} U_{(\epsilon)}, G^{\frac{1}{3}} U_{(6)}\right)$ where G is Gamma distributed and

Proof: Applying Mecke's principle, we conduct the following computation:

$$
\begin{aligned}
E\left[\sum_{v \in V(\mathcal{P})} f(v, \mathcal{P})\right] & =\frac{1}{3!} E\left[\sum_{(x, y, z) \in \mathcal{P}^{3}} f\left(c_{x, y, z}, \mathcal{P} \backslash B_{x, y, z}\right) \mathbf{1}_{V(\mathcal{P})}\left(c_{x, y, z}\right)\right] \\
& =\frac{1}{6} \int_{\left(\mathbf{H}^{c}\right)^{3}} E\left[f\left(c_{x, y, z}, \mathcal{P}_{x, y, z} \backslash B_{x, y, z}\right) \mathbf{1}_{V\left(\mathcal{P}_{x, y, z}\right)}\left(c_{x, y, z}\right)\right] d x d y d z \\
& =\int_{\left\{x_{1}<y_{1}<z_{1}\right\}} E\left[f\left(c_{x, y, z}, \mathcal{P}_{x, y, z} \backslash B_{x, y, z}\right)\right] e^{-\left|B_{x, y, z} \cap \mathbf{H}^{c}\right|} d x d y d z
\end{aligned}
$$

where $c_{x, y, z}$ denotes the center of the circumscribed ball $B_{x, y, z}$ to the points x, y, z and $\mathcal{P}_{x, y, z}$ denotes $\mathcal{P} \cup\{x, y, z\}$.
The second step is also classical and consists in applying the Blaschke-Petkantschin formula, which is nothing but a change of variables where the triplet $\{x, y, z\}$ is parametrized by $c_{x, y, z}$, the radius of the ball $B_{x, y, z}$, and three angles on this ball.

The Jacobian in this change of variables is proportional to a product of three sinus of difference of angles which gives rise after taking the limit $\lambda \rightarrow \infty$, to the term $\left(\theta_{c}-\theta_{l}\right)\left(\theta_{r}-\theta_{c}\right)\left(\theta_{r}-\theta_{l}\right)$.

2b. Following a cell down to the boundary

2b. Following a cell down to the boundary

2b. Following a cell down to the boundary

2b. Following a cell down to the boundary

Proposition. The sequence $\left(B_{n}, H_{n}\right)$ is a Markov chain which asymptotically, for large λ, satisfies the random recursion relation:

$$
\left(B_{n+1}, H_{n+1}\right)=\left(\beta_{n} B_{n}, \frac{\left(B_{n}\right)^{3} H_{n}}{\left(B_{n}\right)^{3}+\frac{3}{2} \xi_{n} H_{n}}\right)
$$

where $\left(\beta_{n}\right)_{n}$ and $\left(\xi_{n}\right)_{n}$ are sequences of iid variables which are respectively $B(2,2)$ and $\operatorname{Exp}(1)$ distributed.

Proof: As for the starting point, the proof goes in two steps.

$$
\text { the new couple }\left(b^{\prime}, h^{\prime}\right) \text { in terms of } z^{\prime}
$$

We apply Mecke-Slivnyak's formula for any non-negative measurable function f,

$$
\begin{aligned}
& / / \int_{\lambda H_{n}=\lambda h}^{c_{Z_{c}, Z_{n}, Z_{n-1}}} E\left[f\left(B_{n+1}^{(\lambda)}, H_{n+1}^{(\lambda)}\right) \mid\left(B_{n}^{(\lambda)}, H_{n}^{(\lambda)}\right)=(b, h)\right]=E\left[\sum_{z^{\prime} \in \mathcal{P}_{(b, h)}^{(\lambda)}} f\left(G_{(b, h)}^{(\lambda)}\left(z^{\prime}\right)\right) \mathbf{1}_{\mathcal{V}}\left(c_{Z_{c}, Z_{n}, z^{\prime}}\right)\right] \\
& =\int f\left(G_{(b, h)}^{(\lambda)}\left(z^{\prime}\right)\right) P\left[\mathcal{P}_{(b, h)}^{(\lambda)} \cap \Delta_{n}^{(\lambda)}=\emptyset\right] d z^{\prime} \\
& =\int f\left(G_{(b, h)}^{(\lambda)}\left(z^{\prime}\right)\right) \mathbf{e}^{-\left|\Delta_{\mathrm{n}}^{(\lambda)}\right|} d z^{\prime}
\end{aligned}
$$

where $\Delta_{n}^{(\lambda)}=B_{Z_{c}, Z_{n}, z^{\prime}} \backslash B_{Z_{c}, Z_{n}, Z_{n-1}}$ is the crescent moon of the picture.

The change of variable $z^{\prime} \mapsto\left(b^{\prime}, h^{\prime}\right)$, and the computation of its Jacobian finishes the job, and we obtain the following limiting transition density:

$$
p^{(\infty)}\left((b, h),\left(b^{\prime}, h^{\prime}\right)\right)=\frac{4\left(\mathbf{b}-\mathbf{b}^{\prime}\right) \mathbf{b}^{\prime}}{\mathbf{h}^{\prime 2}} \exp \left(-\frac{2}{3} \mathbf{b}^{3}\left(\frac{1}{\mathbf{h}^{\prime}}-\frac{1}{\mathbf{h}}\right)\right) \mathbf{1}_{(0, b)}\left(b^{\prime}\right) \mathbf{1}_{(0, h)}\left(h^{\prime}\right)
$$

After some struggle, we deduce the nice probabilistic representation with Beta and Gamma variables.

2c. A remarkable property of the Markov chain $\left(B_{n}, H_{n}\right)$

Define the shape quantity $T_{n}=\frac{B_{n}^{3}}{H_{n}}$ (denote it is also equal to $\left.\frac{\left(\lambda^{\frac{1}{3}} B_{n}\right)^{3}}{\lambda H_{n}}\right)$.
It satisfies the renewal-type recursion relation $\quad T_{n+1}=\beta_{n}^{3}\left(T_{n}+\frac{3}{2} \xi_{n}\right)$
We can use Letac's principle on renewal series to prove the convergence in distribution of the variable T_{n}. Namely, the variable

$$
T_{n}=\beta_{n-1}^{3}\left(\beta_{n-2}^{3}\left(\cdots\left(\beta_{0}^{3}\left(T_{0}+\frac{3}{2} \xi_{0}\right)+\cdots\right)+\frac{3}{2} \xi_{n-1}\right) \quad\right. \text { a.s. }
$$

has the same law as $\beta_{0}^{3}\left(\beta_{1}^{3}\left(\cdots\left(\beta_{n-1}^{3}\left(T_{0}+\frac{3}{2} \xi_{n-1}\right)+\cdots\right)+\frac{3}{2} \xi_{0}\right)\right.$
(putting the indices in reverse order), which is an a.s. convergent sequence.
Therefore the sequence T_{n} converges in distribution, and we are in one of the very few cases of renewal series having an explicit limiting law. Namely,

Proposition. The sequence T_{n} converges in distribution towards the law of $\frac{3}{2} \Gamma_{1}^{3} \Gamma_{2} \Gamma_{3}$
where Γ_{1}, Γ_{2} and Γ_{3} are independent random variables
such that $\Gamma_{1} \sim \operatorname{Beta}(2,2), \Gamma_{2} \sim \Gamma\left(\frac{5}{3}, 1\right)$ and $\Gamma_{3} \sim \operatorname{Beta}\left(2, \frac{2}{3}\right)$ respectively.

2d. The limiting random Menhir

Collecting the two previous results we obtain:

Theorem. After normalization, vertically by λ and horizontally by $\lambda^{\frac{1}{3}}$, a cell of height λ converges in distribution to the random Menhir defined below.

An important part of the work is to couple the actual Markov chain $\left(B_{n}^{(\lambda)}, H_{n}^{(\lambda)}\right)$ with the ideal Markov chain along the whole boundary of the cell. For that purpose, one has to introduce large enough regions, which are stable enough by the Markov chains, highly probable for both Markov chains, and on which both transition kernels are close in total variation.

2e. The "curvature" of the Menhir at its base point

Let X_{n} be the successive first coordinates of the first vertices of the Menhir, so that the n-th vertex has coordinates $\left(X_{n}, H_{n}\right)$.

Theorem. The sequence $\frac{H_{n}}{X_{n}{ }^{3}}$ converges in distribution to a non-degenerate distribution.

Proof. If we introduce, $W_{n}=\frac{B_{n}^{2}}{H_{n}} X_{n}$, we get the identity $\frac{H_{n}}{X_{n}^{3}}=\frac{T_{n}^{2}}{W_{n}^{3}}$.
Now, both T_{n} and W_{n}, satisfies contracting recursion relations:

$$
\begin{aligned}
W_{n+1} & =\beta_{n}^{2}\left(W_{n}+\frac{3}{2} \xi_{n}\right) \\
T_{n+1} & =\beta_{n}^{3}\left(T_{n}+\frac{3}{2} \xi_{n}\right)
\end{aligned}
$$

As we did for the sequence T_{n}, we can now use Letac's principle on renewal series to prove the convergence in distribution of the couple $\left(T_{n}, W_{n}\right)$.

Therefore the sequence $\left(T_{n}, W_{n}\right)$ converges in distribution, and the result follows.

2 f . The asymptotic number of vertices of a cell

Theorem. There are asymptotically $\frac{4}{5} \log \lambda$ vertices in a cell of depth λ.

Proof: The initial basis B_{0} is of order 1. From the recursion identity,

$$
B_{n} \simeq \beta_{0} \beta_{1} \cdots \beta_{n-1} B_{0}
$$

where the variables β_{n} are iid and $B(2,2)$ distributed.
Since $E\left[\log \beta_{n}\right]=-\frac{5}{6}$,

$$
B_{n}=\exp \left(-\frac{5}{6} n(1+o(1))\right)
$$

At the boundary of the half-plane, the half basis B_{n} is of order $\lambda^{-\frac{1}{3}}$ since $\lambda^{\frac{1}{3}} B_{n}$ must be of order 1.
Hence, it takes $\frac{2}{5} \log \lambda$ steps to go all the way down to the boundary of the half-plane.

3. Two simulations

Gallic art remains rather rudimentary:

MERCIX à L'ARMORIQUE!

