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Let us consider a uniform Poisson Point Process in the plane



The iconic result in this subject says that the mean number of vertices of a cell is equal to 6



An example: the map of the airports over the world
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1 - When the underlying PPP has a uniform intensity outside a large region



A simulation with an isolated point : two types of cell

λK

elongated intermediate cells

large cell

λΓ



Theorem. (P. Calka, Y. Demichel, E. 2021)
When λ goes to∞, the intensity of the projection of the vertices on ∂K is asymptotically

C.λ−1/3.
dist(O, S)1/3

r
2/3
s

ds

where rs is the curvature of ∂K at point s, and ds is the Lebesgue measure on ∂K.

1. The number of vertices of the large cell

O

λs

λS

λΓ

λ∂K

Poisson Point Process with
intensity 1



2. The Voronoi diagram of a uniform PPP outside the upper half-plane

Study the asymptotic properties of a cell conditioned to have

its highest point at (0, λ), when λ→∞.

Goal:

(0, λ)



Some familiar picture?

Goal: Study the asymptotic properties of cathedrals...



Zooming on a cell

Step 1: the starting point

Step 2: the evolution of the boundary

Two steps:

ZrZcZl



2a. The 3 bisecting lines starting from the point (0, λ), conditioned to be a vertex
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The vertex (0, λ) comes from the presence of three germs Zl, Zc and Zr

defined by three angles of order λ−
2
3 and an extra radius of order λ−

1
3 .

Proposition. As λ goes to infinity, the quadruplet (R,Θl,Θc,Θr) converges in distribution to a distribution proportional to
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√
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3 r
3
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√
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In other words, the limiting quadruplet (R,Θl,Θc,Θr) ∼ (G
2
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3U(6)) where G is Gamma distributed and
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E

[ ∑
v∈V (P)

f(v,P)

]
=

1

3!
E

[ ∑
(x,y,z)∈P3

f(cx,y,z,P \Bx,y,z)1V (P)(cx,y,z)

]

=
1

6

∫
(Hc)3

E
[
f(cx,y,z,Px,y,z \Bx,y,z)1V (Px,y,z)(cx,y,z)

]
dxdydz

=

∫
{x1<y1<z1}

E
[
f(cx,y,z,Px,y,z \Bx,y,z)

]
e−|Bx,y,z∩Hc|dxdydz

Applying Mecke’s principle, we conduct the following computation:

where cx,y,z denotes the center of the circumscribed ball Bx,y,z to the points x, y, z and Px,y,z denotes P ∪ {x, y, z}.

The second step is also classical and consists in applying the Blaschke-Petkantschin formula, which is nothing but a

change of variables where the triplet {x, y, z} is parametrized by cx,y,z, the radius of the ball Bx,y,z,

and three angles on this ball.

The Jacobian in this change of variables is proportional to a product of three sinus of difference of angles which

gives rise after taking the limit λ→∞, to the term (θc − θl)(θr − θc)(θr − θl).

Proof:



2b. Following a cell down to the boundary
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2b. Following a cell down to the boundary
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Denote by:
- (B0, H0), the basis and height
of the first (purple) triangle
- (B1, H1), the basis and height
of the next (green) triangle
- (Bn, Hn)....
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Denote by:
- (B0, H0), the basis and height
of the first (purple) triangle
- (B1, H1), the basis and height
of the next (green) triangle
- (Bn, Hn)....

Proposition. The sequence (Bn, Hn) is a Markov chain which asymptotically, for large λ,
satisfies the random recursion relation:

(Bn+1, Hn+1) =

(
βnBn,

(Bn)3Hn

(Bn)3 + 3
2
ξnHn

)

where (βn)n and (ξn)n are sequences of iid variables which are respectively B(2, 2) and Exp(1)
distributed.
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Proof:

p(∞)((b, h), (b′, h′)) = 4(b−b′)b′

h′2 exp
(
− 2

3b
3
(

1
h′ −

1
h

))
1(0,b)(b

′)1(0,h)(h
′).

We apply Mecke-Slivnyak’s formula for any non-negative measurable function f ,

E
[
f(B

(λ)
n+1, H

(λ)
n+1)

∣∣ (B(λ)
n , H(λ)

n ) = (b, h)
]

= E

[ ∑
z′∈P(λ)

(b,h)

f(G
(λ)
(b,h)(z

′))1V(cZc,Zn,z′)

]

=

∫
f(G

(λ)
(b,h)(z

′))P
[
P(λ)
(b,h) ∩∆(λ)

n = ∅
]
dz′

=

∫
f(G

(λ)
(b,h)(z

′))e−|∆
(λ)
n |dz′

where ∆
(λ)
n = BZc,Zn,z′ \BZc,Zn,Zn−1

is the crescent moon of the picture.

the new couple (b′, h′) in terms of z′As for the starting point, the proof goes in two steps.

The change of variable z′ 7→ (b′, h′), and the computation of its Jacobian finishes the job, and we obtain the following

limiting transition density:

After some struggle, we deduce the nice probabilistic representation with Beta and Gamma variables.

Zn = z

Zc
Zn+1 = z′

λHn = λh

λ1/3b

λHn+1 = λh′

λ1/3b′

cZc,Zn,Zn−1

c
Zc,Zn,z′



Define the shape quantity Tn = B3
n

Hn
(denote it is also equal to (λ

1
3Bn)3

λHn
).

Tn+1 = β3
n(Tn + 3

2
ξn)It satisfies the renewal-type recursion relation

We can use Letac’s principle on renewal series to prove the convergence in distribution

of the variable Tn. Namely, the variable

Therefore the sequence Tn converges in distribution, and we are in one of the very few cases

(putting the indices in reverse order), which is an a.s. convergent sequence.

Tn = β3
n−1(β3

n−2(· · · (β3
0(T0 + 3

2
ξ0) + · · ·) + 3

2
ξn−1) a.s.

Proposition. The sequence Tn converges in distribution towards the law of 3
2
Γ3

1Γ2Γ3

has the same law as β3
0(β3

1(· · · (β3
n−1(T0 + 3

2
ξn−1) + · · ·) + 3

2
ξ0)

where Γ1, Γ2 and Γ3 are independent random variables

such that Γ1 ∼ Beta(2, 2), Γ2 ∼ Γ(5
3
, 1) and Γ3 ∼ Beta(2, 2

3
) respectively.

of renewal series having an explicit limiting law. Namely,

2c. A remarkable property of the Markov chain (Bn, Hn)
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2d. The limiting random Menhir

(Bn+1, Hn+1) =

(
βnBn,

(Bn)
3Hn

(Bn)3+
3
2 ξnHn

)

Collecting the two previous results we obtain:

Theorem. After normalization, vertically by λ and horizontally by λ
1
3 , a cell of height λ

converges in distribution to the random Menhir defined below.

Hl
0

= Hr
0

= 1

−Bl
2

Br
2

An important part of the work is to couple the actual Markov chain (B
(λ)
n , H

(λ)
n ) with the ideal Markov chain along the whole

highly probable for both Markov chains, and on which both transition kernels are close in total variation.

boundary of the cell. For that purpose, one has to introduce large enough regions, which are stable enough by the Markov chains,



2e. The ”curvature” of the Menhir at its base point

Theorem. The sequence Hn

Xn
3 converges in distribution to a non-degenerate distribution.

Let Xn be the successive first coordinates of the first vertices of the Menhir, so that the n-th vertex has coordinates (Xn, Hn).

Proof. If we introduce, Wn =
B2
n

Hn

Xn, we get the identity
Hn

X3
n

=
T 2
n

W 3
n

.

Now, both Tn and Wn, satisfies contracting recursion relations:

Wn+1 = β2
n(Wn + 3

2
ξn)

As we did for the sequence Tn, we can now use Letac’s principle on renewal series to prove

the convergence in distribution of the couple (Tn,Wn).

Therefore the sequence (Tn,Wn) converges in distribution, and the result follows.

Tn+1 = β3
n(Tn + 3

2
ξn)



Proof: The initial basis B0 is of order 1. From the recursion identity,

Bn ' β0β1 · · · βn−1B0

where the variables βn are iid and B(2, 2) distributed.
Since E[log βn] = −5

6
,

Bn = exp(−5

6
n(1 + o(1))).

At the boundary of the half-plane, the half basis Bn is of order λ−
1
3 since λ

1
3Bn must be of

order 1.
Hence, it takes 2

5
log λ steps to go all the way down to the boundary of the half-plane.

Theorem. There are asymptotically 4
5

log λ vertices in a cell of depth λ.

2f. The asymptotic number of vertices of a cell



3. Two simulations

Gallic art remains rather rudimentary:



MERCIX à L’ARMORIQUE !


