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The origins of optimal transport
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Problem [Monge, 1781]
» How to move dirt from one place (déblais) to another (remblais) while minimizing the effort ?
> Find a mapping T between the two distributions of mass (transport).
> Optimize with respect to a displacement cost ¢(x,y) (optimal).
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The origins of optimal transport

—— Source g
—— Target u;
— c(xy)

Problem [Monge, 1781]

— T(x)

—a

» How to move dirt from one place (déblais) to another (remblais) while minimizing the effort ?

> Find a mapping T between the two distributions of mass (fransport).

> Optimize with respect to a displacement cost ¢(x,y) (optimal).
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Optimal transport (Monge formulation)

Distributions Quadratic cost c(x, y) = [x — y|?
— ¢(20,y)
—— ¢(40,y)
\ —— ¢(60,y)
0 20 40 60 80 100 0 20 40 60 80 100

X,y y
> Probability measures s and u: on and a cost function c: Qs x Q, — R™.

> The Monge formulation [Monge, 1781] aims at finding a mapping T : Qs — Q.

inf / c(x, T(x))us(x)dx (1)

TH#ps=pt

> mapping does not exist in the general case.

> [Brenier, 1991] proved existence and unicity of the Monge map for c(x,y) = |x— y||* and
distributions with densities.
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Kantorovich relaxation

Y2

Ys

> Leonid Kantorovich (1912--1986), Economy nobelist in 1975
> Focus on where the mass goes, allow splitting [Kantorovich, 1942].
> Applications mainly for resource allocation problems
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Optimal transport (Kantorovich formulation)

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y|?

—— Source Us(x)
—— Target uely)

— vix,y) M

y

» The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic coupling
v € P(Qs x ;) between Qs and Q¢

Yo —argmin [ clx,y)y(x,y)dy, ®)
Qs X Q¢

ad

st yeP= {'y >0, / ~(x,y)dy = us,/ Y(x,y)dx = ut}
Qr Qs

> ~ is a joint probability measure with marginals s and ;.
> Linear Program that always has a solution.

ptima ransport an lachine Learnin: ol
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Wasserstein distance

Source distribution Divergences (scaled)

— W11

— w

— h(TV)
—— I, (sq. eucl.)

Target distributions

I

Wasserstein distance

Wi ) =i [ oy (5, )ddy = Byl ) )

where c(x,y) = |lx — ||
» Do not need the distribution fo have overlapping support.
> Subgradients can be computed with the dual variables of the LP.
» can be made scalable using a dual form.
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The 3 ways of optimal transport

Discrete Semi-discrete Continuous
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Image from Gabriel Peyré
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Discrete distributions: Empirical vs Histogram

n n
Discrete measure: p = Z aidx;, Xj€ €, Z ai=1
i=1 i=1

Lagrangian (point clouds) Eulerian (histograms)
e %
e
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0gs @
em00®® x;
4 °
Q

» Constant weight: a; = % > Fixed positions x; eg. grid

> Convex polytope ¥, (simplex):
{(a)i> 0,32 =1}
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Optimal transport with discrete distributions

Distributions

Y e Matrix C OT matrix y
MR ° %o il
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OT Linear Program
When s = Z,n;1 a;&xls and e = Zf;l b,'(sx;;

Yo =argmin (v,C)p =D 7yijci;
P ij
where C is a cost matrix with ¢;; = ¢(x,x) and the marginals constraints are
P= {'r € RT)™ ™| A1y, = 2,71y, = b}

Linear program with nsn; variables and ns 4+ n; constraints.

Optimal assignment

when ns = n;, and a; and b; are uniform, we have an optimal assignement problem and the
solution is a 1-to-1 matching. ~ is a permutation matrix.
Optimal Transport and Machine Learning
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Entropic regularized optimal transport

Distributions

Reg. OT matrix with A=1e-3

Reg. OT matrix with A=1e-2
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Entropic regularization [Cuturi, 2013]

'yé = arg rr;in (v, C)p + )\Z'y(i,j)(log’y(i,j) -1)

)

> Regularization with the negative entropy of ~.

> Looses sparsity, gains stability.

> Strictly convex optimization problem.
» Loss and OT matrix are differentiable.
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
° t X
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Entropic regularization [Cuturi, 2013]

vo =argmin  (v,C)p+ A} y(ij)(logv(i.j) = 1)
YE ij
> Regularization with the negative entropy of ~. ’

> Looses sparsity, gains stability.
> Strictly convex optimization problem.

> Loss and OT matrix are differentiable.

v
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Solving the entropy regularized problem

Lagrangian of the optimization problem

L(v,0,8) = > 7;Cij+ My(logy; — 1) + & (y1s —a) + B (v 1, — b)

y

OL(v, ., B)/0v; = Cj+Alogvy;+aitf
i Ci' j
OL(y,0,8)/07,=0 = vy =exp( L) exp(— ) exp( )

Entropy-regularized transport

The solution of enfropy regularized opfimal transport problem is of the form

75 = diag(u) exp(—C/A)diag(v)
> Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.
> Relation with dual variables: u; = exp(ai/A), v; = exp(Bj/A).
» Can be solved by the Sinkhorn-Knopp algorithm.
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Sinkhorn-Knopp algorithm

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).
Require: a,b,C, \
u® =1, K = exp(—C/))
foriinl,..., n; do
v =b @ K u'™Y // Update right scaling
u? =a@Kv? // Update left scaling
end for
return T = diag(u(""‘>)Kdiag(v<""f))

> The algorithm performs alternatively a scaling along the rows and columns of K = exp(fg)
to match the desired marginals.

> Complexity O(kn?), where k iterations are required to reach convergence
> Fast implementation in parallel, GPU friendly




General case for entropic OT: autodifferentiation

ub ( K ® Mxy)vr,

T1y.e.5Tp MXY_’IE

L+ 0+1

Sinkhorn ¢=1,...,L —1
Image from Marco Cuturi
Sinkhorn Autodiff [Genevay et al., 2017]
» Computing gradients through implicit function theorem can be costly [Luise et al, 2018].
> Each iteration of the Sinkhorn algorithm is differentiable.
» Modern neural network toolboxes can perform autodiff (PyTorch, Tensorflow).
> Fast but needs log-stabilization for numerical stability.
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Some aspects of optimal transport in machine learning
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Optimal distribution y
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Divergence between histograms

> Use the ground metric to encode complex relations between
the bins.

» Loss for multilabel classifier [Frogner et al, 2015]
» Document-Topic representation [Zhao et al, 2020]

Divergence between empirical distributions
> Objective function for generative models [Arjovsky et al, 2017].
> Missing data imputation [Muzellec et al, 2020].

> Learn with train/test mismatch
[Courty et al, 2016, ?, Rakotomamonjy et al, 2020]

Transporting with optimal transport
» Color adaptation in image [Ferradans et al, 2014].
» OT mapping estimation [Perrot et al, 2016].




Wasserstein distance as a multilabel loss

Slberlan husky Eskimo dog

Leveraging output space structure [Frogner et al., 2015]

> Classes of a multiclass (multi-label) problem have structure
> Takes into account semantic of classes in the output distribution probability
» Error in " “similar" class is less penalized than to dissimilar one

> can be represented as a Wasserstein distance between true label and output of a model.
ground metric represent the distance between classes

L1
min ; W(fa(xi), i)
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Wasserstein loss for generative modelling

Generative modelling as a matching distribution problem

» Learn a model f3(-) that maps random vector to target space
> Distribution of the model output is targeted to be similar to the learning samples
> Similarity as Wasserstein sense (arovsky et al, 2017, Deshpande et al, 2018, Nguyen et al, 2020]

n};n W({fa(zi)}lelv {Xj}szl)

{zi} some random vectors, {x;} some samples from the target distribution
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Missing Data Imputation

Impute missing data under matching distribution 10SS Muzeliec et ai., 2020], [Kirchmeyer et a. 2021]
> Impute missing data so that distributions of imputed data and full ones match
» Sinkhorn divergence as a discrepancy measure

o
Tmputer( -, 0;51) N\ X
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Learning with mismatch in train and test sets

Domain Adaptation

» several ML applications break the hypothesis that Piain = Prest

> Goal of domain adaptation : learn a representation mapping g(-) and a classifier h(-) so
that representations of train/test data in the latent space matches

> Learning problem (snen et al, 2018, Courty et al, 2016, Rakotomamoniy et dl, 2020]

min Z h(g(<))), vi) + AW(P(ROE), h(X"))

> Representation when learning only on source and then after adaptation :

MARSc
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Domain Adaptation problem

Amazon

GO

Feature extraction l

Context

> usual DA contfext : marginal distributions are different but related.

DLSR

Feature extraction 1

A,

> Classification problem with data coming from different sources (domains).

Optimal Transport and Machine Learning
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Unsupervised domain adaptation problem

Amazon OLSR
)
<

ctogcom” |

Featureextraciionl + Labels Feature extraction 1 no |abe|s !

>

not working 1t

decision function

Problems

> Labels only available in the source domain, and classification is conducted in the target
domain.

» Classifier trained on the source domain data performs badly in the target domain
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Domain adaptation short state of the art

Reweighting schemes
> Distribution change between domains.

> Reweigh samples to compensate this change
[Sugiyama et al, 2008].

Subspace methods
» Data is invariant in a common latent subspace.
> Minimization of a divergence between the projected
domains
[Si et al, 2010, Ganin et al, 2016, Tzeng et al, 2017].
> Use additional label information
[Long et al, 2014, Long and Wang, 2015].

Optimal Transport and Machine Learning
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Domain-invariant Unsupervised domain adaptation

Classical approaches
> Learn representation mapping g(-) that matches source and target and a classifier h(-)

1 & .
min > L7, h(g(x)) + AD(F, py) + (b, g)
==

» D(-,-) is a distance between distributions. it can be Jenssen-Shannon approximation,
Maximum Mean discrepancy or Optfimal Transport or any Integral Probability Metric.

‘Why this approach may break?‘

» Aligning marginals may not match class-conditionals
> when label proportions in source and target domains are different

23/ 45
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IWlustration of domain-invariance failure

mismatch when aligning just marginals
N\ i 5 N
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' J \ / \
> left/right figure : before/after 00 £ > 00 L h3 AN .
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04 0s
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class-conditionals 02 02
00 00
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
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mismatch induced by label shift
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Domain Adaptation : Generalized Target Shift

General DA situation

> label shift : ps(y = k) # pr(y = k)
» class-conditional shift : ps(zly = k) # pr(zly = k), z being the latent space representation

Our contribution
> proposes a learning model that matches class-conditionals without labels in target

> uses OT as a distance between distributions. it helps providing guarantees.
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Generalized Target Shift

Goal
> a labeled source dataset {(x7,y;)}r=, with y; € {1...C}

> unlabeled examples from the target domain {x{}7, with all x; € X, sampled iid from their
respective distributions.

> We learn a representation through a representation mapping g: X — Z and a classifier h

v

Assumptions

> when g is learned only on source domains Ps(zly = k) # P:(z]ly = k)

Notations
> fis the true labelling fonction

» marginal distributions of the source and target domains in the latent space as p%(z) and
p%(2). Class-conditionals are noted p), £ pu(zly = j)

> Label proportions p};” £ py(y = j) with U € {S, T}.

Optimal Transport and Machine Learning 26 / 45



Theoretical results for Generalized Target Shift

‘ Target risk bound ‘

Assuming that any function h € H is K-Lipschitz and g is a continuous function then for every
function h and g we have

er(hog f) < es(hog, f)+ 2K~ WDs (. ) + [1 +sup w(z)&(z))] es(h” 0 g, f) + (£, )

Intuitions

v

First term : expected risk in source domain

Wasserstein distance between marginals in latent space

product of label proportion ratio w(z) and class-conditionals ratio Sk(z)
optimal classifier h* expected risk in the source

Last term : how good the frue labelling function in source and target are similar in the latent
space.

>
>
>
>

V.




Learning problem

Optimizing the bound
> apply the bound with label reweighted source so that no label shift occur — w(z) =1
> estimate label proportions in target p
> minimize the empirical risk in source
> minimize distance between marginals and class-conditionals

Resulting learning problem

min 1 ; W CRILIE, h(22))) + AWD (55, ) + (b, )

o

where the importance weight w(x}) = p}:y; allows to simulate sampling from pé; given p§, and the
S

discrepancy between marginals is the Wasserstein distance

(4)

v

Optimal Transport and Machine Learning
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Solving the learning problem

Algorithm
> train g and h through SGD and backprop
» for scalability, we use the Kantorovich dual for the WD

WD (5%, pf) = Sup E, v (2W2) — B, s v(2). (5)
viiLs

> we still need to estimate p{ and ensure that class-conditionals match.

Match and reweight strategy
» Cluster target domain data
» Match clusters with source class-conditionals
> identify target class-conditionals
> estimate target label proportion
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Match

and Reweight illustration

“. —'g‘ A ‘.
3 TP
Y
* - o §
o = " .
H *

Class 0 Source
+ Class 1 Source

Class 0 Source

+ Class 1 Source

Class 2 Source
Mixture 2

> Mixture 1

.
-
Pl

o \ -
Class 0 Source
+ Class 1 Source
Class 2 Source
Class 0 Target
Class 1 Target
Class 2 Target:

# Source sample mean

Class 2 Source L
Target Examples ® Mixture 0 ® Target sample mean

Steps
left we have the source and target samples in the latent Space
middle Target samples are clustered. Classes are assigned arbitrarily.
right Optimal assignment of ps(z]ly = k) to pr(z]y = k) mean vectors to, so that label propagation
relates source and target classes.
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Match and Reweight Guarantee

> label propagation is based on optimal assignment
» geometry of source and target classes should follow a specific pattern.
> When are we ensured to have correct match of classes ?

Proposition

Denote as v = + jczl 0, and p = < J.Czl 6, the empirical measures built from class-conditionals
S T
probabilities in source and target domains.

Choose D a distance over probability distributions

if we have the following assumption, known as the D-cyclical monotonicity relation, holds for
any permutation o
> D, ph) < Y D(ps p7”)
i J

then then solving the optimal transport problem between v and p using D as the ground cost
matches correctly class-conditional probabilities.

Sufficient condition

ik D(Py Py) < D(pk, pY)

Optimal Trar
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IWlustration of correct matching

Example of empirical mean matching

Example of empirical mean matching

Example of empirical mean matching

D

oeo.
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Class 2 Source
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Source sample mean
Target sample mean
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H
3
3
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Rens

Class 0 Source

-
aa
B

Source sample mean
Target sample mean

ok

Example of empirical mean matching

Example of empirical mean matching

Example of empirical mean matching

Class 0 Source
Class 1 Source

Source sample mean
Target sample mean

+

Class 0 Source

s
oo
aa
X

Source sample mean
Target sample mean

ok

*

Class 0 Source.

Source sample mean
Target sample mean
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From matching marginals to matching class-conditionals

we minimize distance between marginals. what happen to the class-conditionals?

Proposition
Denote as v the optimal coupling plan for distributions v = % jc:1 5P,~ and p = % jc:1 6P; .
S T
Assume that the classes are ordered so that we have v = % diag(1) and that cyclical monotonicity
holds.
Then ~" = diag(a) is also optimal for the transportation problem with marginals ' = Zle ajd
)

and ' =35 a0 o With ;> 0,

> |n addition, if the Wasserstein distance between v/ and p’ is 0, it implies that the distance
between class-conditionals are all 0.

Hence

Optimal assignment does not change with weights. Achieving 0 distance between reweighted
source and target marginals = 0 distance between class-conditionals.
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Experimental setting

Baselines
» Source only
» Domain adversarial NN (DANN) : no adaptation to Ilabel shift

Competitors

> Different ways of estimating p% for use in

WD: (P, p%) = sup E, sw(z)v(z) - EZNPgTv(z).

Iviesr =%
> WDs =1/(1+ B) with 8 user-defined constant, and should depend on the label shift
[Wu et al, 2019]

> IW-WD : w(z) = Z—; with pr estimated assuming class-conditionals are equal
[Combes et al, 2020].

Architecture
> Feature extractor g(-) and classifier h(-) are same for all methods
» SGD and WD + gradient penalty for WD

Optimal Transport and Machine Learning
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Experiments on toy data

Toy
> Source : 3 Gaussians -- Target : same Gaussians with translated mean
» different label proportion between source and target
» different distances from sources (breaking cyclical monotonicity)

3.0
2.0
2.0 25
15 154 2.0 28
10 u 10 15
< ’ < Qe
° 0.5 °
051 €3 05
*
"
0.0
0.0 ‘ 00
os + Source Examples 031 + Source Examples 051 e + Source Examples
- Target Examples 1o Target Examples 10 Target Examples.
-05 0.0 05 10 1s 10 1s -10 -05 00 05 10 15
X1 X1
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Examples and Results

setting 0 setting 1
10 = - Ty
09
0.8 T .\.
MARSC ‘\‘
g 07 N % 071 @ marsg
= X \3( S wwo N
06 061 f DANN
\l\\.\ < wp_o l—}\
05 05 wD_1
N - wo2
04 0.4 1 -@- WD_3
& wos
03 03—

0.2 03 0.4
Shift Amplitude

With respects to the problem hardness

02 03 0.4
Shift Amplitude

Balanced Accuracy
°
3

-

041 -@ wp3

03

Percentage of Majority Class

Percentage of Majority Class

Pd f / - >0.65
9 3
€ o e 0.60
= =
h——f‘ 3 MARSC 3
A/ H & 071 -@ MARsg & go055
° % \w_wp k-1 % w_wp
Sosf DANN . g 00 DANN
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~& wo_4 98— ~& wos
03 - 0. -
50 60 7 8 40 50 6 7 0 1 40
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Computer Vision Tasks

Setting

» Classical CV datasets

> Performance averaged over 10 random seed + statistical test

Seffing Source DANN WDg_g WDg_1 WDg_o WDg_3 WDg_4 TW-WD MARSg MARSC
MNIST-USPS 10 modes
Balanced 769137 797£35 937+07 7h3E43 513140 766133 71957 953104 95.6£07 956110
Mid 804431 787430 943407 754434 556443 790431 723442 956105 897423 904426
High 78149 81.8+40 939411 874417 838+52 857425 836430 941+10 883+15 897423
USPS-MNIST 10 modes
Balanced 770£26 805E22 734E28 667E29 199128 558129 521£35 805E22 846117 855121
Mid 795+28 789+18 758416 633423 532428 472424 483429 78.4135 797436 785425
High 785124 778120 761427 630+33 576+48 512+ 44 493433 715447 756418 77+2.4
MNIST-MNISTM 10 modes
Seffing 1 583113 61211 57TLE1T7 502FE44 L70£20 579E11 600L£13 631L31 581£23 566E46
Setting 2 600411 611410 581414 534435 486424 597407 581408 650435 577423 557421
Setting 3 581412 60.4+1.4 577412 477449 422473 571410 535+11 5254148 537472 537433
VisdDA 12 modes
seffing 1 LI9E15 528F21 L58L4L3 L42E30 355L46 410E£30 376E34 504+E23 533E09 551L16
sefting 2 418415 508416 457489 405+48 362450 361446 319457 486418 531416 553416
sefting 3 40643 492413 471416 421430 363144 373435 350454 466+13 508416 521412
Office 31

A-D 737E14 743E18 772E07 651E£20 627E26 715E12 639ET1 757E16 761E09 782113
D-W 837411 819415 826+06 835408 828407 801+05 871109 789+15 863106 862408
W-A 541409 522410 489404 568404 530405 588404 549405 522407 607108 552408
W-D 928409 878414 951403 931405 876409 947406 912406 97009 9514£08 938406
D-A 525409 481412 498404 488+05 501404 503107 508+05 414418 547409 550409
A - 675415 702410 6714£06 60621 529414 640413 597408 688416 731415 719412
#Wins (/34) 7 9 5 0 T 0 2 9 2 21

Aver. Rank 416 473 532 697 838 659 757 495 3.38 295
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Ablation study

Label proportion estimation

Estimating label proportion in target domains is key for : label propagation and matching
marginals

05 ] EEN MARSg BN MARSg [ ] ., - MARSg |
I.I MARSe o7 MARSe . : MARSc I
N § - W-WD _ oo] N IW-WD - | _ o] = wewD
4 5 4
5 1.1l | M m 0 R £ i
g il | : E BER BN g
2 k] s I
S HI il ¢ & ER RR ¢ I
| HEE RN a. W
I | N | ™ M Ur Ui
‘m® N RN Mgl i
L LN RD AR BE sp 0 /i BN NN (IR NI
11 2 3 6

1 2 " 10 4
VisDA3 Settmg VisDA-12 Setting Office31 Setting

Findings

» Our approach using agglomerative clustering seems to work better than other approaches
(Gaussian mixture models and using the confusion matrix as in Des Combes et al.
[Combes et al, 2020]

» The method proposed by Des Combes assume that class-conditionals are equal (which is not
true)

4
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Ablation study

Low-dimensional representation in the latent space (VisDA-3)

Before Matching

DANN

W_{beta=1}

&

After Matching

DANN

W_{beta=1}

Optimal Transport and Machine Learning
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Conclusion

Python code available on GitHub
https://github.com/rflamary/POT

o o o ®« o @
o ® O L o
. o - O
oW o @ (of
(o8 ] (ol (of

Summary
» a model that handles Conditional and label shift in DA
» guarantees under some geometrical assumptions in the latent space
» needs label proportion

Paper and code
> https://arxiv.org/abs/2006.08161
> https://github.com/arakotom/mars_domain_adaptation

Optimal Transport and Machine Learning
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