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What is optimal transport ?

A geometry of probability measures
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The origins of optimal transport

Problem [Monge, 1781]
▶ How to move dirt from one place (déblais) to another (remblais) while minimizing the effort ?
▶ Find a mapping T between the two distributions of mass (transport).
▶ Optimize with respect to a displacement cost c(x, y) (optimal).
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Optimal transport (Monge formulation)
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▶ Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.
▶ The Monge formulation [Monge, 1781] aims at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x,T(x))µs(x)dx (1)

▶ mapping does not exist in the general case.
▶ [Brenier, 1991] proved existence and unicity of the Monge map for c(x, y) = ∥x − y∥2 and
distributions with densities.
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Kantorovich relaxation

▶ Leonid Kantorovich (1912--1986), Economy nobelist in 1975
▶ Focus on where the mass goes, allow splitting [Kantorovich, 1942].
▶ Applications mainly for resource allocation problems
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Optimal transport (Kantorovich formulation)
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Transport cost c(x, y) = |x y|2

c(x, y)

▶ The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic coupling
γ ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = arg min
γ

∫
Ωs×Ωt

c(x, y)γ(x, y)dxdy, (2)

s.t. γ ∈ P =

{
γ ≥ 0,

∫
Ωt

γ(x, y)dy = µs,

∫
Ωs

γ(x, y)dx = µt

}
▶ γ is a joint probability measure with marginals µs and µt.
▶ Linear Program that always has a solution.
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Wasserstein distance
Source distribution

Target distributions

Divergences (scaled)
W1

1
W2

2
l1 (TV)
l2 (sq. eucl.)

Wasserstein distance
Wp

p(µs, µt) = min
γ∈P

∫
Ωs×Ωt

c(x, y)γ(x, y)dxdy = E(x,y)∼γ [c(x, y)] (3)

where c(x, y) = ∥x − y∥p

▶ Do not need the distribution to have overlapping support.
▶ Subgradients can be computed with the dual variables of the LP.
▶ can be made scalable using a dual form.
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The 3 ways of optimal transport

Image from Gabriel Peyré
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Discrete distributions: Empirical vs Histogram

Discrete measure: µ =

n∑
i=1

aiδxi , xi ∈ Ω,

n∑
i=1

ai = 1

Lagrangian (point clouds)

xi

▶ Constant weight: ai =
1
n

Eulerian (histograms)

▶ Fixed positions xi e.g. grid
▶ Convex polytope Σn (simplex):{

(ai)i ≥ 0;
∑

i ai = 1
}
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Optimal transport with discrete distributions
Distributions

Source s

Target t

Matrix C OT matrix 

OT Linear Program
When µs =

∑ns
i=1 aiδxs

i
and µt =

∑nt
i=1 biδxt

i

γ0 = arg min
γ∈P

{
⟨γ,C⟩F =

∑
i,j

γi,jci,j

}

where C is a cost matrix with ci,j = c(xs
i , xt

j ) and the marginals constraints are

P =
{
γ ∈ (R+

)
ns×nt | γ1nt = a,γT1ns = b

}
Linear program with nsnt variables and ns + nt constraints.

Optimal assignment
when ns = nt , and ai and bi are uniform, we have an optimal assignement problem and the
solution is a 1-to-1 matching. γ is a permutation matrix.
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Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

γλ
0 = arg min

γ∈P
⟨γ,C⟩F + λ

∑
i,j

γ(i, j)(logγ(i, j)− 1)

▶ Regularization with the negative entropy of γ .
▶ Looses sparsity, gains stability.
▶ Strictly convex optimization problem.
▶ Loss and OT matrix are differentiable.
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Solving the entropy regularized problem

Lagrangian of the optimization problem

L(γ,α,β) =
∑

ij
γ ijCij + λγ ij(logγ ij − 1) +αT(γ1nt − a) + βT(γT1ns − b)

∂L(γ, α, β)/∂γ ij = Cij + λ logγ ij + αi + βj

∂L(γ, α, β)/∂γ ij = 0 =⇒ γ ij = exp(αi
λ
) exp(−Cij

λ
) exp(βj

λ
)

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

γλ
0 = diag(u) exp(−C/λ)diag(v)

▶ Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.
▶ Relation with dual variables: ui = exp(αi/λ), vj = exp(βj/λ).
▶ Can be solved by the Sinkhorn-Knopp algorithm.
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Sinkhorn-Knopp algorithm

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).
Require: a, b,C, λ

u(0) = 1,K = exp(−C/λ)
for i in 1, . . . , nit do

v(i) = b ⊘ K⊤u(i−1) // Update right scaling
u(i) = a ⊘ Kv(i) // Update left scaling

end for
return T = diag(u(nit))Kdiag(v(nit))

▶ The algorithm performs alternatively a scaling along the rows and columns of K = exp(−C
λ
)

to match the desired marginals.
▶ Complexity O(kn2), where k iterations are required to reach convergence
▶ Fast implementation in parallel, GPU friendly
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General case for entropic OT: autodifferentiation

Image from Marco Cuturi

Sinkhorn Autodiff [Genevay et al., 2017]
▶ Computing gradients through implicit function theorem can be costly [Luise et al., 2018].
▶ Each iteration of the Sinkhorn algorithm is differentiable.
▶ Modern neural network toolboxes can perform autodiff (PyTorch, Tensorflow).
▶ Fast but needs log-stabilization for numerical stability.
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Some aspects of optimal transport in machine learning

µt

µ
s

Optimal distribution γ

-2 0 2

-2

-1

0

1

2

Divergence between histograms
▶ Use the ground metric to encode complex relations between
the bins.

▶ Loss for multilabel classifier [Frogner et al., 2015]
▶ Document-Topic representation [Zhao et al., 2020]

Divergence between empirical distributions
▶ Objective function for generative models [Arjovsky et al., 2017].
▶ Missing data imputation [Muzellec et al., 2020].
▶ Learn with train/test mismatch

[Courty et al., 2016, ?, Rakotomamonjy et al., 2020]

Transporting with optimal transport
▶ Color adaptation in image [Ferradans et al., 2014].
▶ OT mapping estimation [Perrot et al., 2016].
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Wasserstein distance as a multilabel loss

Leveraging output space structure [Frogner et al., 2015]
▶ Classes of a multiclass (multi-label) problem have structure
▶ Takes into account semantic of classes in the output distribution probability
▶ Error in ``similar'' class is less penalized than to dissimilar one
▶ can be represented as a Wasserstein distance between true label and output of a model.
ground metric represent the distance between classes

min
fθ

1

n

n∑
i=1

W(fθ(xi), yi)
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Wasserstein loss for generative modelling

Generative modelling as a matching distribution problem
▶ Learn a model fθ(·) that maps random vector to target space
▶ Distribution of the model output is targeted to be similar to the learning samples
▶ Similarity as Wasserstein sense [Arjovsky et al., 2017, Deshpande et al., 2018, Nguyen et al., 2020]

min
fθ

W
(
{fθ(zi)}K

i=1, {xj}K
j=1

)
{zi} some random vectors, {xj} some samples from the target distribution
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Missing Data Imputation

Impute missing data under matching distribution loss [Muzellec et al., 2020], [Kirchmeyer et al. 2021]

▶ Impute missing data so that distributions of imputed data and full ones match
▶ Sinkhorn divergence as a discrepancy measure
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Learning with mismatch in train and test sets

Domain Adaptation
▶ several ML applications break the hypothesis that Ptrain = Ptest

▶ Goal of domain adaptation : learn a representation mapping g(·) and a classifier h(·) so
that representations of train/test data in the latent space matches

▶ Learning problem [Shen et al., 2018, Courty et al., 2016, Rakotomamonjy et al., 2020]

min
h,g

1

n
∑

i
L(h(g(xS

i )), yi) + λW(P(h(XS), h(XT))

▶ Representation when learning only on source and then after adaptation :

MARSc
Class 0 Source
Class 1 Source
Class 2 Source
Class 0 Target
Class 1 Target
Class 2 Target

MARSc
Class 0 Source
Class 1 Source
Class 2 Source
Class 0 Target
Class 1 Target
Class 2 Target
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Domain Adaptation problem
Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domainsContext
▶ Classification problem with data coming from different sources (domains).
▶ usual DA context : marginal distributions are different but related.
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Unsupervised domain adaptation problem
Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems
▶ Labels only available in the source domain, and classification is conducted in the target

domain.
▶ Classifier trained on the source domain data performs badly in the target domain
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Domain adaptation short state of the art

Reweighting schemes
▶ Distribution change between domains.
▶ Reweigh samples to compensate this change
[Sugiyama et al., 2008].

Subspace methods
▶ Data is invariant in a common latent subspace.
▶ Minimization of a divergence between the projected
domains
[Si et al., 2010, Ganin et al., 2016, Tzeng et al., 2017].

▶ Use additional label information
[Long et al., 2014, Long and Wang, 2015].
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Domain-invariant Unsupervised domain adaptation

Classical approaches
▶ Learn representation mapping g(·) that matches source and target and a classifier h(·)

min
h,g

1

ns

ns∑
i=1

L(ys
i , h(g(xs

i ))) + λD(pg
S, p

g
T) + Ω(h, g)

▶ D(·, ·) is a distance between distributions. it can be Jenssen-Shannon approximation,
Maximum Mean discrepancy or Optimal Transport or any Integral Probability Metric.

Why this approach may break?

▶ Aligning marginals may not match class-conditionals
▶ when label proportions in source and target domains are different
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Illustration of domain-invariance failure

mismatch when aligning just marginals

▶ top/bottom panels : source/target
▶ left/right figure : before/after

optimization

=⇒ we can have a mismatch in
class-conditionals

mismatch induced by label shift

▶ top/bottom panels : source/target
▶ left/right figure : before/after

optimization

=⇒ source classes have to be mixed
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Domain Adaptation : Generalized Target Shift

General DA situation
▶ label shift : pS(y = k) ̸= pT(y = k)
▶ class-conditional shift : ps(z|y = k) ̸= pT(z|y = k), z being the latent space representation

Our contribution
▶ proposes a learning model that matches class-conditionals without labels in target
▶ uses OT as a distance between distributions. it helps providing guarantees.
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Generalized Target Shift

Goal
▶ a labeled source dataset {(xs

i , ys
i )}ns

i=1 with ys
i ∈ {1 . . .C}

▶ unlabeled examples from the target domain {xt
i}nt

i=1 with all xi ∈ X , sampled i.i.d from their
respective distributions.

▶ We learn a representation through a representation mapping g : X → Z and a classifier h

Assumptions
▶ when g is learned only on source domains Ps(z|y = k) ̸= Pt(z|y = k)

Notations
▶ f is the true labelling fonction
▶ marginal distributions of the source and target domains in the latent space as pg

S(z) and
pg

T(z). Class-conditionals are noted pj
U ≜ pU(z|y = j)

▶ Label proportions py=j
U ≜ pU(y = j) with U ∈ {S,T}.
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Theoretical results for Generalized Target Shift

Target risk bound

Assuming that any function h ∈ H is K-Lipschitz and g is a continuous function then for every
function h and g, we have

εT(h ◦ g, f) ≤ εS(h ◦ g, f) + 2K · WD1(pg
S, p

g
T) +

[
1 + sup

k,z
w(z)Sk(z))

]
εS(h⋆ ◦ g, f) + εz

T(fg
S, f

g
T)

Intuitions
▶ First term : expected risk in source domain
▶ Wasserstein distance between marginals in latent space
▶ product of label proportion ratio w(z) and class-conditionals ratio Sk(z)
▶ optimal classifier h⋆ expected risk in the source
▶ Last term : how good the true labelling function in source and target are similar in the latent
space.
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Learning problem

Optimizing the bound
▶ apply the bound with label reweighted source so that no label shift occur =⇒ w(z) = 1

▶ estimate label proportions in target py
T

▶ minimize the empirical risk in source
▶ minimize distance between marginals and class-conditionals

Resulting learning problem

min
g,h

1

n

ns∑
i=1

w†(xs
i )L(ys

i , h(g(xs
i ))) + λWD1(pg

S̃
, pg

T) + Ω(h, g) (4)

where the importance weight w†(xs
i ) =

py=yi
T

py=yi
S

allows to simulate sampling from pg
S̃ given pg

S, and the

discrepancy between marginals is the Wasserstein distance
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Solving the learning problem

Algorithm
▶ train g and h through SGD and backprop
▶ for scalability, we use the Kantorovich dual for the WD

WD1(p̃g
s , pg

t ) = sup
∥v∥L≤1

Ez∼pg
S
w†(z)v(z)− Ez∼pg

T
v(z). (5)

▶ we still need to estimate pY
t and ensure that class-conditionals match.

Match and reweight strategy
▶ Cluster target domain data
▶ Match clusters with source class-conditionals
▶ identify target class-conditionals
▶ estimate target label proportion
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Match and Reweight illustration

Class 0 Source
Class 1 Source
Class 2 Source
Target Examples

Class 0 Source
Class 1 Source
Class 2 Source
Mixture 2
Mixture 1
Mixture 0

Class 0 Source
Class 1 Source
Class 2 Source
Class 0 Target
Class 1 Target
Class 2 Target
Source sample mean
Target sample mean

Steps
left we have the source and target samples in the latent Space

middle Target samples are clustered. Classes are assigned arbitrarily.
right Optimal assignment of pS(z|y = k) to pT(z|y = k) mean vectors to, so that label propagation

relates source and target classes.
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Match and Reweight Guarantee
▶ label propagation is based on optimal assignment
▶ geometry of source and target classes should follow a specific pattern.
▶ When are we ensured to have correct match of classes ?

Proposition
Denote as ν = 1

C
∑C

j=1 δpj
S
and µ = 1

C
∑C

j=1 δpj
T
the empirical measures built from class-conditionals

probabilities in source and target domains.
Choose D a distance over probability distributions

if we have the following assumption, known as the D-cyclical monotonicity relation, holds for
any permutation σ ∑

j
D(pj

S, p
j
T) ≤

∑
j

D(pj
S, p

σ(j)
T )

then then solving the optimal transport problem between ν and µ using D as the ground cost
matches correctly class-conditional probabilities.

Sufficient condition

∀j, k D(pj
S, p

j
T) ≤ D(pj

S, p
k
T)
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Illustration of correct matching

Example of  empirical mean matching

Class 0 Source
Class 1 Source
Class 2 Source
Class 0 Target
Class 1 Target
Class 2 Target
Source sample mean
Target sample mean
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Class 0 Source
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Class 2 Target
Source sample mean
Target sample mean
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From matching marginals to matching class-conditionals

Question
we minimize distance between marginals. what happen to the class-conditionals?

Proposition
Denote as γ the optimal coupling plan for distributions ν = 1

C
∑C

j=1 δpj
S
and µ = 1

C
∑C

j=1 δpj
T
.

Assume that the classes are ordered so that we have γ = 1
C diag(1) and that cyclical monotonicity

holds.
Then γ′ = diag(a) is also optimal for the transportation problem with marginals ν′ =

∑C
j=1 ajδpj

S

and µ′ =
∑C

j=1 ajδpj
T
, with aj > 0, ∀j.

▶ In addition, if the Wasserstein distance between ν′ and µ′ is 0, it implies that the distance
between class-conditionals are all 0.

Hence
Optimal assignment does not change with weights. Achieving 0 distance between reweighted
source and target marginals =⇒ 0 distance between class-conditionals.
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Experimental setting

Baselines
▶ Source only
▶ Domain adversarial NN (DANN) : no adaptation to label shift

Competitors
▶ Different ways of estimating py

T for use in

WD1(p̃g
s , pg

t ) = sup
∥v∥L≤1

Ez∼pg
S
w(z)v(z)− Ez∼pg

T
v(z).

▶ WDβ = 1/(1 + β) with β user-defined constant, and should depend on the label shift
[Wu et al., 2019]

▶ IW-WD : w(z) = pT
pS
with pT estimated assuming class-conditionals are equal

[Combes et al., 2020].

Architecture
▶ Feature extractor g(·) and classifier h(·) are same for all methods
▶ SGD and WD + gradient penalty for WD
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Experiments on toy data

Toy
▶ Source : 3 Gaussians -- Target : same Gaussians with translated mean
▶ different label proportion between source and target
▶ different distances from sources (breaking cyclical monotonicity)
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Examples and Results
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With respects to the problem hardness
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Computer Vision Tasks

Setting
▶ Classical CV datasets
▶ Performance averaged over 10 random seed + statistical test

Setting Source DANN WDβ=0 WDβ=1 WDβ=2 WDβ=3 WDβ=4 IW-WD MARSg MARSc
MNIST-USPS 10 modes

Balanced 76.9±3.7 79.7±3.5 93.7±0.7 74.3±4.3 51.3±4.0 76.6±3.3 71.9±5.7 95.3±0.4 95.6±0.7 95.6±1.0
Mid 80.4±3.1 78.7±3.0 94.3±0.7 75.4±3.4 55.6±4.3 79.0±3.1 72.3±4.2 95.6±0.5 89.7±2.3 90.4±2.6
High 78.1±4.9 81.8±4.0 93.9±1.1 87.4±1.7 83.8±5.2 85.7±2.5 83.6±3.0 94.1±1.0 88.3±1.5 89.7±2.3

USPS-MNIST 10 modes
Balanced 77.0±2.6 80.5±2.2 73.4±2.8 66.7±2.9 49.9±2.8 55.8±2.9 52.1±3.5 80.5±2.2 84.6±1.7 85.5±2.1
Mid 79.5±2.8 78.9±1.8 75.8±1.6 63.3±2.3 53.2±2.8 47.2±2.4 48.3±2.9 78.4±3.5 79.7±3.6 78.5±2.5
High 78.5±2.4 77.8±2.0 76.1±2.7 63.0±3.3 57.6±4.8 51.2±4.4 49.3±3.3 71.5±4.7 75.6±1.8 77.1±2.4

MNIST-MNISTM 10 modes
Setting 1 58.3±1.3 61.2±1.1 57.4±1.7 50.2±4.4 47.0±2.0 57.9±1.1 60.0±1.3 63.1±3.1 58.1±2.3 56.6±4.6
Setting 2 60.0±1.1 61.1±1.0 58.1±1.4 53.4±3.5 48.6±2.4 59.7±0.7 58.1±0.8 65.0±3.5 57.7±2.3 55.7±2.1
Setting 3 58.1±1.2 60.4±1.4 57.7±1.2 47.7±4.9 42.2±7.3 57.1±1.0 53.5±1.1 52.5±14.8 53.7±7.2 53.7±3.3

VisdDA 12 modes
setting 1 41.9±1.5 52.8±2.1 45.8±4.3 44.2±3.0 35.5±4.6 41.0±3.0 37.6±3.4 50.4±2.3 53.3±0.9 55.1±1.6
setting 2 41.8±1.5 50.8±1.6 45.7±8.9 40.5±4.8 36.2±5.0 36.1±4.6 31.9±5.7 48.6±1.8 53.1±1.6 55.3±1.6
setting 3 40.6±4.3 49.2±1.3 47.1±1.6 42.1±3.0 36.3±4.4 37.3±3.5 35.0±5.4 46.6±1.3 50.8±1.6 52.1±1.2

Office 31
A - D 73.7±1.4 74.3±1.8 77.2±0.7 65.1±2.0 62.7±2.6 71.5±1.2 63.9±1.1 75.7±1.6 76.1±0.9 78.2±1.3
D - W 83.7±1.1 81.9±1.5 82.6±0.6 83.5±0.8 82.8±0.7 80.1±0.5 87.1±0.9 78.9±1.5 86.3±0.6 86.2±0.8
W - A 54.1±0.9 52.2±1.0 48.9±0.4 56.8±0.4 53.0±0.5 58.8±0.4 54.9±0.5 52.2±0.7 60.7±0.8 55.2±0.8
W - D 92.8±0.9 87.8±1.4 95.1±0.3 93.1±0.5 87.6±0.9 94.7±0.6 91.2±0.6 97.0±0.9 95.1±0.8 93.8±0.6
D - A 52.5±0.9 48.1±1.2 49.8±0.4 48.8±0.5 50.1±0.4 50.3±0.7 50.8±0.5 41.4±1.8 54.7±0.9 55.0±0.9
A - W 67.5±1.5 70.2±1.0 67.1±0.6 60.6±2.1 52.9±1.4 64.0±1.3 59.7±0.8 68.8±1.6 73.1±1.5 71.9±1.2
#Wins (/34) 7 9 5 0 1 0 2 9 12 21
Aver. Rank 4.16 4.73 5.32 6.97 8.38 6.59 7.57 4.95 3.38 2.95
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Ablation study

Label proportion estimation
Estimating label proportion in target domains is key for : label propagation and matching
marginals
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Findings
▶ Our approach using agglomerative clustering seems to work better than other approaches
(Gaussian mixture models and using the confusion matrix as in Des Combes et al.
[Combes et al., 2020]

▶ The method proposed by Des Combes assume that class-conditionals are equal (which is not
true)
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Ablation study

Low-dimensional representation in the latent space (VisDA-3)
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Conclusion

Python code available on GitHub
https://github.com/rflamary/POT

Summary
▶ a model that handles Conditional and label shift in DA
▶ guarantees under some geometrical assumptions in the latent space
▶ needs label proportion

Paper and code
▶ https://arxiv.org/abs/2006.08161
▶ https://github.com/arakotom/mars_domain_adaptation
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