Modèles espace-état pour la prévision adaptative de consommation électrique

Jethro Browell, Matteo Fasiolo, Yannig Goude, Joseph de Vilmarest et Olivier Wintenberger

Journées MAS: 30 Août 2022

Prévision Probabiliste

Prévision de séries temporelles

Nous cherchons à prévoir $y_t \in \mathbb{R}$. Décomposition en 14 régions. Consommation *nette* = consommation - production *non pilotable*.

Prévision Moyenne 0000000 Prévision Probabiliste 000000000

Variables explicatives: calendaires

Profils quotidiens

Heure de la journée

Prévision Moyenne 0000000 Prévision Probabiliste 000000000

Variables explicatives: météorologie

Prévision Probabiliste 000000000

Objectif

Nous souhaitons prévoir y_t sachant x_t . Dans quel objectif ?

• Prévision **en moyenne**: estimation de $\mathbb{E}[y_t | x_t]$. Équivalent au minimum de $\mathbb{E}[(y_t - \hat{y}_t)^2 | x_t]$.

Objectif

Nous souhaitons prévoir y_t sachant x_t . Dans quel objectif ?

- Prévision **en moyenne**: estimation de $\mathbb{E}[y_t | x_t]$. Équivalent au minimum de $\mathbb{E}[(y_t - \hat{y}_t)^2 | x_t]$.
- Prévision en probabilité: estimation de L(y_t | x_t). Pour 0 < q < 1 la prévision ŷ_{t,q} satisfait P(y_t ≤ ŷ_{t,q} | x_t) = q. Équivalent au minimum de E[ρ_q(y_t, ŷ_t) | x_t]:

Pinball Loss for Various Quantile Levels

Prévision Moyenne 0000000 Prévision Probabiliste 000000000

Offline vs Online

• Offline: $\hat{y}_t = f_{\hat{\theta}}(x_t)$. Exemple: Empirical Risk Minimizer

$$\hat{ heta} \in {
m arg\,min} \sum_{t \in \mathcal{T}} \ell(y_t, f_{\hat{ heta}}(x_t))$$

Prévision Moyenne 0000000 Prévision Probabiliste 000000000

Offline vs Online

• Offline: $\hat{y}_t = f_{\hat{\theta}}(x_t)$. Exemple: Empirical Risk Minimizer

$$\hat{ heta} \in rgmin \sum_{t \in \mathcal{T}} \ell(y_t, f_{\hat{ heta}}(x_t))$$

• Online / Adaptatif: $\hat{y}_t = f_{\hat{\theta}_t}(x_t)$ avec $\hat{\theta}_{t+1} = \Phi(\hat{\theta}_t, x_t, y_t)$. Exemple: Online Gradient Descent

$$\hat{\theta}_{t+1} = \hat{\theta}_t - \gamma_t \frac{\partial \ell(\mathbf{y}_t, f_{\theta}(\mathbf{x}_t))}{\partial \theta} \Big|_{\hat{\theta}_t}$$

Modèle initial en deux étapes

• Modèle additif généralisé Gaussien pour la prévision en moyenne:

$$y_t = f_1(x_{t,1}) + \ldots + f_d(x_{t,d}) + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma^2).$$

 f_1, \ldots, f_d : effets décomposés sur une base de splines:

$$f_j(x) = \sum_{k=1}^{m_j} \beta_{j,k} B_{j,k}(x) \, .$$

Modèle initial en deux étapes

• Modèle additif généralisé Gaussien pour la prévision en moyenne:

$$y_t = f_1(x_{t,1}) + \ldots + f_d(x_{t,d}) + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma^2).$$

 f_1, \ldots, f_d : effets décomposés sur une base de splines:

$$f_j(x) = \sum_{k=1}^{m_j} \beta_{j,k} B_{j,k}(x) \, .$$

• **Prévision probabiliste**: régression quantile sur les résidus car l'hypothèse Gaussienne n'est pas satisfaite en pratique.

$$\begin{split} \beta_{q} \in \arg\min_{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}(y_{t} - \hat{y}_{t}, \beta^{\top} z_{t}), \\ \rho_{q}(y, \hat{y}_{q}) = (\mathbb{1}_{y < \hat{y}_{q}} - q) (\hat{y}_{q} - y). \end{split}$$

Prévision Probabiliste 000000000

Motivation à l'adaptation

Entraînement: 2014-2018. Test: 2019-2021.

Evolution du GAM Offline

Prévision Moyenne •000000

Prévision Probabiliste 000000000

Introduction

Prévision Moyenne

Prévision Probabiliste

Modèle espace-état linéaire Gaussien

• GAM:

$$y_t - \mathbf{1}^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2).$$

• Adaptation espace-état:

$$y_t - \theta_t^{\top} f(x_t) \sim \mathcal{N}(0, \sigma_t^2),$$

 $\theta_t - \theta_{t-1} \sim \mathcal{N}(0, Q_t).$

Modèle espace-état linéaire Gaussien

• GAM:

$$y_t - \mathbf{1}^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2).$$

• Adaptation espace-état:

$$y_t - \theta_t^{\top} f(x_t) \sim \mathcal{N}(0, \sigma_t^2), \\ \theta_t - \theta_{t-1} \sim \mathcal{N}(0, Q_t).$$

Théorème (R. Kalman and R. Bucy, 1961)

Si le modèle espace-état est satisfait pour des variances connues, et si $\theta_1 \sim \mathcal{N}(\hat{\theta}_1, P_1)$, alors $\theta_{t+1} \mid (x_s, y_s)_{s \leq t} \sim \mathcal{N}(\hat{\theta}_{t+1}, P_{t+1})$ pour

$$P_{t|t} = P_t - \frac{P_t f(x_t) f(x_t)^\top P_t}{f(x_t)^\top P_t f(x_t) + \sigma_t^2}, \qquad P_{t+1} = P_{t|t} + Q_{t+1}$$
$$\hat{\theta}_{t+1} = \hat{\theta}_t - \frac{P_{t|t}}{\sigma_t^2} \left(f(x_t) (\hat{\theta}_t^\top f(x_t) - y_t) \right).$$

Le filtre de Kalman, un algorithme de gradient

$$P_{t|t} = P_t - \frac{P_t f(x_t) f(x_t)^\top P_t}{f(x_t)^\top P_t f(x_t) + \sigma_t^2}, \qquad P_{t+1} = P_{t|t} + Q_{t+1}, \\ \hat{\theta}_{t+1} = \hat{\theta}_t - \frac{P_{t|t}}{\sigma_t^2} \Big(f(x_t) (\hat{\theta}_t^\top f(x_t) - y_t) \Big).$$

- 1. **Statique**: $Q_t = 0, \sigma_t^2 = 1$. Alors $P_t = O(1/t)$.
- 2. **Dynamique** avec variances constantes: $Q_t = Q, \sigma_t^2 = \sigma^2$. Alors $P_t = O(1)$.
- 3. **Dynamique** avec variances adaptatives¹.

¹J. de Vilmarest, O. Wintenberger (2021), Viking: Variational Bayesian Variance Tracking, *arXiv:2104.10777*

Prévision Moyenne

Prévision Probabiliste 000000000

Variances constantes

$$y_t - \theta_t^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2),$$

 $\theta_t - \theta_{t-1} \sim \mathcal{N}(0, Q).$

¹D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, *IEEE Transactions on Power Systems*

Prévision Moyenne

Prévision Probabiliste 000000000

Variances constantes

$$y_t - \theta_t^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2),$$

 $\theta_t - \theta_{t-1} \sim \mathcal{N}(0, Q).$

- Log-vraisemblance non convexe. Pas de garantie d'optimalité.
- *Q* diagonale¹. Optimisation par *iterative grid search*.

¹D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, *IEEE Transactions on Power Systems*

Prévision Moyenne

Prévision Probabiliste 000000000

Évolution des coefficients

Gauche: cadre statique avec $\theta_{t+1} = \theta_t$. Droite: cadre dynamique où $\theta_{t+1} - \theta_t \sim \mathcal{N}(0, Q)$.

Prévision Moyenne

Prévision Probabiliste 000000000

Correction du biais

Prévision Moyenne

Prévision Probabiliste 000000000

Performance

$$\mathsf{RMSE} = \sqrt{rac{1}{|\mathcal{T}|}\sum_{t\in\mathcal{T}}(y_t - \hat{y}_t)^2}\,, \qquad \mathsf{MAE} = rac{1}{|\mathcal{T}|}\sum_{t\in\mathcal{T}}|y_t - \hat{y}_t|$$

	20:	19	2020		2021	
Forecast	nRMSE	nMAE	nRMSE	nMAE	nRMSE	nMAE
Persistence (7 days)	0.691	0.589	0.710	0.599	0.737	0.639
Persistence (2 days)	0.767	0.686	0.755	0.668	0.736	0.668
Offline GAM	0.356	0.327	0.485	0.453	0.635	0.601
Incremental offline GAM (yearly)	-	-	0.407	0.376	0.387	0.378
Incremental offline GAM (daily)	0.338	0.307	0.370	0.344	0.377	0.365
Kalman GAM (Static)	0.337	0.307	0.374	0.347	0.380	0.368
Kalman GAM (Dynamic)	0.324	0.292	0.328	0.301	0.332	0.307

Prévision Probabiliste •00000000

Introduction

Prévision Moyenne

Prévision Probabiliste

Prévision Probabiliste

Prévisions quantiles par filtre de Kalman

Le filtre de Kalman fournit $\hat{\theta}_t, P_t$ tel que $\theta_t \mid (x_s, y_s)_{s < t} \sim \mathcal{N}(\hat{\theta}_t, P_t)$ et $y_t - \theta_t^\top f(x_t) \sim \mathcal{N}(0, \sigma^2)$.

Prévisions quantiles par filtre de Kalman

Le filtre de Kalman fournit $\hat{\theta}_t, P_t$ tel que $\theta_t \mid (x_s, y_s)_{s < t} \sim \mathcal{N}(\hat{\theta}_t, P_t)$ et $y_t - \theta_t^\top f(x_t) \sim \mathcal{N}(0, \sigma^2)$.

• Si le modèle est satisfait:

$$y_t \sim \mathcal{N}(\hat{\theta}_t^{\top} f(x_t), \sigma^2 + f(x_t)^{\top} P_t f(x_t)).$$

Prévisions quantiles par filtre de Kalman

Le filtre de Kalman fournit $\hat{\theta}_t, P_t$ tel que $\theta_t \mid (x_s, y_s)_{s < t} \sim \mathcal{N}(\hat{\theta}_t, P_t)$ et $y_t - \theta_t^\top f(x_t) \sim \mathcal{N}(0, \sigma^2)$.

• Si le modèle est satisfait:

$$y_t \sim \mathcal{N}(\hat{\theta}_t^{\top} f(x_t), \sigma^2 + f(x_t)^{\top} P_t f(x_t)).$$

• En pratique: prévision en moyenne, puis régression quantile sur les résidus $y_t - \hat{\theta}_t^{\top} f(x_t)$.

ightarrow peut-on obtenir une régression quantile adaptative ?

Prévision Probabiliste

Régression quantile adaptative

Régression quantile offline:

$$\beta_q \in \arg\min_{\beta \in \mathbb{R}^{d_0}} \sum_{t \in \mathcal{T}} \rho_q(y_t - \hat{y}_t, \beta^\top z_t).$$

Online Gradient Descent avec pas de gradient $\alpha > 0$:

$$\beta_{t+1,q} = \beta_{t,q} - \alpha \frac{\partial \rho_q(y_t - \hat{y}_t, \beta^\top z_t)}{\partial \beta} \Big|_{\beta_{t,q}},$$

avec
$$\frac{\partial \rho_q(y_t - \hat{y}_t, \beta^\top z_t)}{\partial \beta}\Big|_{\beta_{t,q}} = (\mathbb{1}_{y_t < \hat{y}_t + \beta_{t,q}^\top z_t} - q) z_t$$
 (hors cas dégénéré).

Choix du pas de gradient par agrégation d'experts

- Nous utilisons différents pas de gradients α_k , typiquement 10^k .
- Création d'experts $\hat{y}_{t,q}^{(k)}$ correspondant aux α_k .
- Agrégation d'experts: Bernstein Online Aggregation²:

$$\hat{y}_{t,q} = \sum_{k} p_t^{(k)} \hat{y}_{t,q}^{(k)} ,$$

où $p_t^{(k)}$ est estimé récursivement.

 $^{^{2}\}text{O}.$ Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

Calibration

Prévision Moyenne 0000000 Prévision Probabiliste

Calibration au cours du temps

Prévision Probabiliste

Métrique

Numériquement nous utilisons le continuous ranked probability score³:

$$CRPS(F, y) = \int_{-\infty}^{+\infty} (F(x) - \mathbb{1}_{y \le x})^2 dx = 2 \int_{0}^{1} \rho_q(y, F^{-1}(q)) dq.$$

Version discrète:

$$RPS((\hat{y}_{q_1},\ldots,\hat{y}_{q_i}),y) = \sum_{i=1}^{l} \rho_{q_i}(y,\hat{y}_{q_i})(q_{i+1}-q_{i-1}),$$

³T. Gneiting and A. E. Raftery (2007), Strictly proper scoring rules, prediction, and estimation, *Journal of the American statistical Association*

Prévision Moyenne 0000000 Prévision Probabiliste

Performances

	2019	2020	2021
Offline Method	0.231	0.338	0.454
GAM Kalman (Gaussian Quantiles)	0.212	0.217	0.222
GAM Kalman + Offline QR	0.206	0.214	0.217
Offline GAM + QR OGD (10^{-3})	0.218	0.270	0.293
Offline GAM + QR OGD (10^{-2})	0.207	0.221	0.218
Offline GAM + QR OGD (10^{-1})	0.250	0.248	0.293
Offline GAM + QR OGD (BOA)	0.204	0.211	0.216
GAM Kalman + QR OGD (10^{-2})	0.205	0.204	0.212
GAM Kalman + QR OGD (BOA)	0.202	0.201	0.209

Prévision Moyenne

Prévision Probabiliste

Conclusion

- Utilisation d'un modèle espace-état pour la prévision en moyenne. Similaire à un algorithme de descente de gradient. Analogie dans le cas probabiliste: Online Gradient Descent.
- L'évolution de la consommation d'électricité est bien capturée par les modèles espace-état: tests sur différents pays, différentes échelles, différents objectifs.