Modèles espace-état pour la prévision adaptative de consommation électrique

Jethro Browell, Matteo Fasiolo, Yannig Goude, Joseph de Vilmarest et Olivier Wintenberger

Journées MAS: 30 Août 2022
-eDF

Prévision de séries temporelles

Nous cherchons à prévoir $y_{t} \in \mathbb{R}$. Décomposition en 14 régions. Consommation nette $=$ consommation - production non pilotable.

- Scottish \& Southern Electricity Networks
- SP Energy Networks
- Electricity North West
- Nothern Powergrid
- UK Power Networks
- Western Power Distribution

Variables explicatives: calendaires

Région A , à 15 h

Profils quotidiens

Variables explicatives: météorologie

Objectif

Nous souhaitons prévoir y_{t} sachant x_{t}. Dans quel objectif ?

- Prévision en moyenne: estimation de $\mathbb{E}\left[y_{t} \mid x_{t}\right]$. Équivalent au minimum de $\mathbb{E}\left[\left(y_{t}-\hat{y}_{t}\right)^{2} \mid x_{t}\right]$.

Objectif

Nous souhaitons prévoir y_{t} sachant x_{t}. Dans quel objectif ?

- Prévision en moyenne: estimation de $\mathbb{E}\left[y_{t} \mid x_{t}\right]$. Équivalent au minimum de $\mathbb{E}\left[\left(y_{t}-\hat{y}_{t}\right)^{2} \mid x_{t}\right]$.
- Prévision en probabilité: estimation de $\mathcal{L}\left(y_{t} \mid x_{t}\right)$. Pour $0<q<1$ la prévision $\hat{y}_{t, q}$ satisfait $\mathbb{P}\left(y_{t} \leq \hat{y}_{t, q} \mid x_{t}\right)=q$. Équivalent au minimum de $\mathbb{E}\left[\rho_{q}\left(y_{t}, \hat{y}_{t}\right) \mid x_{t}\right]$:

Offline vs Online

- Offline: $\hat{y}_{t}=f_{\hat{\theta}}\left(x_{t}\right)$.

Exemple: Empirical Risk Minimizer

$$
\hat{\theta} \in \arg \min \sum_{t \in \mathcal{T}} \ell\left(y_{t}, f_{\hat{\theta}}\left(x_{t}\right)\right)
$$

Offline vs Online

- Offline: $\hat{y}_{t}=f_{\hat{\theta}}\left(x_{t}\right)$.

Exemple: Empirical Risk Minimizer

$$
\hat{\theta} \in \arg \min \sum_{t \in \mathcal{T}} \ell\left(y_{t}, f_{\hat{\theta}}\left(x_{t}\right)\right)
$$

- Online / Adaptatif: $\hat{y}_{t}=f_{\hat{\theta}_{t}}\left(x_{t}\right)$ avec $\hat{\theta}_{t+1}=\Phi\left(\hat{\theta}_{t}, x_{t}, y_{t}\right)$. Exemple: Online Gradient Descent

$$
\hat{\theta}_{t+1}=\hat{\theta}_{t}-\left.\gamma_{t} \frac{\partial \ell\left(y_{t}, f_{\theta}\left(x_{t}\right)\right)}{\partial \theta}\right|_{\hat{\theta}_{t}}
$$

Modèle initial en deux étapes

- Modèle additif généralisé Gaussien pour la prévision en moyenne:

$$
y_{t}=f_{1}\left(x_{t, 1}\right)+\ldots+f_{d}\left(x_{t, d}\right)+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

f_{1}, \ldots, f_{d} : effets décomposés sur une base de splines:

$$
f_{j}(x)=\sum_{k=1}^{m_{j}} \beta_{j, k} B_{j, k}(x) .
$$

Modèle initial en deux étapes

- Modèle additif généralisé Gaussien pour la prévision en moyenne:

$$
y_{t}=f_{1}\left(x_{t, 1}\right)+\ldots+f_{d}\left(x_{t, d}\right)+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

f_{1}, \ldots, f_{d} : effets décomposés sur une base de splines:

$$
f_{j}(x)=\sum_{k=1}^{m_{j}} \beta_{j, k} B_{j, k}(x) .
$$

- Prévision probabiliste: régression quantile sur les résidus car I'hypothèse Gaussienne n'est pas satisfaite en pratique.

$$
\begin{aligned}
& \beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right), \\
& \rho_{q}\left(y, \hat{y}_{q}\right)=\left(\mathbb{1}_{y<\hat{y}_{q}}-q\right)\left(\hat{y}_{q}-y\right) .
\end{aligned}
$$

Motivation à l'adaptation

Entraînement: 2014-2018. Test: 2019-2021.

Evolution du GAM Offline

Introduction

Prévision Moyenne

Prévision Probabiliste

Modèle espace-état linéaire Gaussien

- GAM:

$$
y_{t}-\mathbf{1}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Adaptation espace-état:

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}\left(0, Q_{t}\right)
\end{aligned}
$$

Modèle espace-état linéaire Gaussien

- GAM:

$$
y_{t}-\mathbf{1}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Adaptation espace-état:

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}\left(0, Q_{t}\right) .
\end{aligned}
$$

Théorème (R. Kalman and R. Bucy, 1961)

Si le modèle espace-état est satisfait pour des variances connues, et si $\theta_{1} \sim \mathcal{N}\left(\hat{\theta}_{1}, P_{1}\right)$, alors $\theta_{t+1} \mid\left(x_{s}, y_{s}\right)_{s \leq t} \sim \mathcal{N}\left(\hat{\theta}_{t+1}, P_{t+1}\right)$ pour

$$
\begin{aligned}
& P_{t \mid t}=P_{t}-\frac{P_{t} f\left(x_{t}\right) f\left(x_{t}\right)^{\top} P_{t}}{f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)+\sigma_{t}^{2}}, \quad P_{t+1}=P_{t \mid t}+Q_{t+1}, \\
& \hat{\theta}_{t+1}=\hat{\theta}_{t}-\frac{P_{t \mid t}}{\sigma_{t}^{2}}\left(f\left(x_{t}\right)\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right)-y_{t}\right)\right) .
\end{aligned}
$$

Le filtre de Kalman, un algorithme de gradient

$$
\begin{aligned}
& P_{t \mid t}=P_{t}-\frac{P_{t} f\left(x_{t}\right) f\left(x_{t}\right)^{\top} P_{t}}{f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)+\sigma_{t}^{2}}, \quad P_{t+1}=P_{t \mid t}+Q_{t+1}, \\
& \hat{\theta}_{t+1}=\hat{\theta}_{t}-\frac{P_{t \mid t}}{\sigma_{t}^{2}}\left(f\left(x_{t}\right)\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right)-y_{t}\right)\right) .
\end{aligned}
$$

1. Statique: $Q_{t}=0, \sigma_{t}^{2}=1$. Alors $P_{t}=O(1 / t)$.
2. Dynamique avec variances constantes: $Q_{t}=Q, \sigma_{t}^{2}=\sigma^{2}$. Alors $P_{t}=O(1)$.
3. Dynamique avec variances adaptatives ${ }^{1}$.
[^0]
Variances constantes

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}(0, Q) .
\end{aligned}
$$

${ }^{1}$ D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, IEEE Transactions on Power Systems

Variances constantes

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}(0, Q) .
\end{aligned}
$$

- Log-vraisemblance non convexe. Pas de garantie d'optimalité.
- Q diagonale ${ }^{1}$.

Optimisation par iterative grid search.

q
${ }^{1}$ D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, IEEE Transactions on Power Systems

Évolution des coefficients

Gauche: cadre statique avec $\theta_{t+1}=\theta_{t}$. Droite: cadre dynamique où $\theta_{t+1}-\theta_{t} \sim \mathcal{N}(0, Q)$.

Correction du biais

Performance

$$
R M S E=\sqrt{\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}}\left(y_{t}-\hat{y}_{t}\right)^{2}}, \quad M A E=\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}}\left|y_{t}-\hat{y}_{t}\right|
$$

	2019		2020		2021	
Forecast	nRMSE	nMAE	nRMSE	nMAE	nRMSE	nMAE
Persistence (7 days)	0.691	0.589	0.710	0.599	0.737	0.639
Persistence (2 days)	0.767	0.686	0.755	0.668	0.736	0.668
Offline GAM	0.356	0.327	0.485	0.453	0.635	0.601
Incremental offline GAM (yearly)	-	-	0.407	0.376	0.387	0.378
Incremental offline GAM (daily)	0.338	0.307	0.370	0.344	0.377	0.365
Kalman GAM (Static)	0.337	0.307	0.374	0.347	0.380	0.368
Kalman GAM (Dynamic)	$\mathbf{0 . 3 2 4}$	$\mathbf{0 . 2 9 2}$	$\mathbf{0 . 3 2 8}$	$\mathbf{0 . 3 0 1}$	$\mathbf{0 . 3 3 2}$	$\mathbf{0 . 3 0 7}$

Prévision Moyenne

Prévision Probabiliste

Prévisions quantiles par filtre de Kalman

Le filtre de Kalman fournit $\hat{\theta}_{t}, P_{t}$ tel que $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ et $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Prévisions quantiles par filtre de Kalman

Le filtre de Kalman fournit $\hat{\theta}_{t}, P_{t}$ tel que $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ et $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- Si le modèle est satisfait:

$$
y_{t} \sim \mathcal{N}\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right), \sigma^{2}+f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)\right)
$$

Prévisions quantiles par filtre de Kalman

Le filtre de Kalman fournit $\hat{\theta}_{t}, P_{t}$ tel que $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ et $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- Si le modèle est satisfait:

$$
y_{t} \sim \mathcal{N}\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right), \sigma^{2}+f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)\right) .
$$

- En pratique: prévision en moyenne, puis régression quantile sur les résidus $y_{t}-\hat{\theta}_{t}^{\top} f\left(x_{t}\right)$.
\rightarrow peut-on obtenir une régression quantile adaptative ?

Régression quantile adaptative

Régression quantile offline:

$$
\beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right) .
$$

Online Gradient Descent avec pas de gradient $\alpha>0$:

$$
\beta_{t+1, q}=\beta_{t, q}-\left.\alpha \frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}},
$$

avec $\left.\frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}}=\left(\mathbb{1}_{y_{t}<\hat{y}_{t}+\beta_{t, q}^{\top} z_{t}}-q\right) z_{t}$ (hors cas dégénéré).

Choix du pas de gradient par agrégation d'experts

- Nous utilisons différents pas de gradients α_{k}, typiquement 10^{k}.
- Création d'experts $\hat{y}_{t, q}^{(k)}$ correspondant aux α_{k}.
- Agrégation d'experts: Bernstein Online Aggregation²:

$$
\hat{y}_{t, q}=\sum_{k} p_{t}^{(k)} \hat{y}_{t, q}^{(k)}
$$

où $p_{t}^{(k)}$ est estimé récursivement.

[^1]
Calibration

Offline GAM + Offline QR: 2019

GAM Kalman + Offline QR: 2019

GAM Kalman (Gaussian Quantiles): 2019

GAM Kalman + QR OGD (BOA): 2019

Calibration au cours du temps

Métrique

Numériquement nous utilisons le continuous ranked probability score ${ }^{3}$:

$$
\operatorname{CRPS}(F, y)=\int_{-\infty}^{+\infty}\left(F(x)-\mathbb{1}_{y \leq x}\right)^{2} d x=2 \int_{0}^{1} \rho_{q}\left(y, F^{-1}(q)\right) d q
$$

Version discrète:

$$
\operatorname{RPS}\left(\left(\hat{y}_{q_{1}}, \ldots, \hat{y}_{q_{1}}\right), y\right)=\sum_{i=1}^{1} \rho_{q_{i}}\left(y, \hat{y}_{q_{i}}\right)\left(q_{i+1}-q_{i-1}\right)
$$

[^2]
Performances

	2019	2020	2021
Offline Method	0.231	0.338	0.454
GAM Kalman (Gaussian Quantiles)	0.212	0.217	0.222
GAM Kalman + Offline QR	$\mathbf{0 . 2 0 6}$	$\mathbf{0 . 2 1 4}$	$\mathbf{0 . 2 1 7}$
Offline GAM + QR OGD $\left(10^{-3}\right)$	0.218	0.270	0.293
Offline GAM + QR OGD $\left(10^{-2}\right)$	0.207	0.221	0.218
Offline GAM + QR OGD $\left(10^{-1}\right)$	0.250	0.248	0.293
Offline GAM + QR OGD (BOA)	0.204	0.211	0.216
GAM Kalman + QR OGD (10-2)	0.205	0.204	0.212
GAM Kalman + QR OGD (BOA)	$\mathbf{0 . 2 0 2}$	$\mathbf{0 . 2 0 1}$	$\mathbf{0 . 2 0 9}$

Conclusion

- Utilisation d'un modèle espace-état pour la prévision en moyenne. Similaire à un algorithme de descente de gradient. Analogie dans le cas probabiliste: Online Gradient Descent.
- L'évolution de la consommation d'électricité est bien capturée par les modèles espace-état: tests sur différents pays, différentes échelles, différents objectifs.

[^0]: ${ }^{1}$ J. de Vilmarest, O. Wintenberger (2021), Viking: Variational Bayesian Variance Tracking, arXiv:2104.10777

[^1]: ${ }^{2}$ O. Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

[^2]: ${ }^{3}$ T. Gneiting and A. E. Raftery (2007), Strictly proper scoring rules, prediction, and estimation, Journal of the American statistical Association

