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Introduction

� Usual learning process

� learn a model on source data (X S, Y S) ∈RnS×dS ×C
� use the model on target data (X T , Y T ) ∈RnT×dT ×C

Source Target
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Introduction

� Usual learning process
� learn a model on source data (X S, Y S) ∈RnS×dS ×C
� use the model on target data (X T , Y T ) ∈RnT×dT ×C

Source Target

✘ If source and target data do not have the same distribution?
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Domain Adaptation (DA)

� Transfer learnt knowledge from source domain to target domain : same
task (classi�cation), di�erent (but related) domains

� trained model becomes more robust when being used on data lying in
another domain

� less labelled data needed in target domain

� Heterogeneous domain adaptation (HDA) : source and target domains

are represented by di�erent features spaces

Source Target
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In DA literature

� Strategies

� Project both data into a common subspace by jointly learning the
common subspace and a classi�er

� Jointly perform implicit data reconstruction and learn a classi�er

� Supervision settings

Y S Y T

Unsupervised DA observed unobserved

Semi-supervised DA observed partially observed

Partial DA partially observed partially observed

Our proposal
Deal with heterogeneous domain adaptation using optimal transport
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OT for DA



Optimal transport (OT)

� Optimisation method (Peyré and Cuturi, 2018)

� Distance between two probability measures (Wasserstein distance)
� Loss in many optimisation problems and approximation algorithms

� Kantorovich formulation to �nd a coupling matrix γ between

� X S = {(xS
i , wS

i )i=1...nS ,,
∑nS

i=1 wS
i = 1}

� X T = {(xT
j , wT

j )j=1...nT ,
∑nT

j=1 wT
j = 1}

γ=OT (wS, wT , C) = argmin
P∈U(wS ,wT )

∑

i,j

CijPij

U(wS , wT ): set of matrices P ∈RnS×nT
+ so that

∑nS

i=1 Pij =wT
j , ∀j= 1 . . . nT and

∑nT

j=1 Pij =wS
i ,

∀i= 1 . . . nS

C: a cost matrix
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OT for domain adaptation (Courty et al., 2016)

� Solve the OT problem γ=OT
�

1/nS; 1/nT ; d(X S; X T )
�

� Assumption : existence of a transfer map M from source to target
domain distributions so that P(Y T |X T ) =P(Y S|M(X S)) and P(X T ) =P(M(X S))

� Transport source data onto the target domain (barycentric mapping)

with γ

� Learn the target classi�er with the transported source data

Source Target
γ
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Joint Distribution OT (JDOT) (Courty et al., 2017)

Simultaneous optimisation of the coupling matrix γ and the classi�er f

min
γ,f

∑

i,j

�

α d(xS
i , xT

j ) +L (y
S
i , f (xT

j ))
�

γij

Assumption: existence of a transfer map from source domain joint distribution PS(X ; Y ) into

target joint distribution PT (X ; Y )

Algorithm 1: Block Coordinate Descent (BCD) for JDOT

initialization: Y T
pred = f T

init (X
T )

for k=1..itermax do
Update transport map:

γ=OT (wS , wT ,αd(X S , X T ) +L (Y S , Y T
pred ))

Update target label: // label propagation

Ŷ T = nTγY S

train classi�er f with (X T , Ŷ T )
predict Y T

pred = f (X T )

✘ Does not address the heterogeneous domain adaptation problem
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OT for HDA



Co-OT for heterogeneous domains (Redko et al., 2020)

� Simultaneous solving of the OT problem on the samples (γs) and on the

variables (γv)

min
γs ,γv

∑

i,j,k,ℓ

d(xS
i,k, xT

j,ℓ)γ
s

i,jγ
v

k,ℓ

� Use label propagation (with γs) to get Ŷ T

Our proposal
Use the principle of CoOT to adapt JDOT to the HDA framework
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Joint Distribution Co-Optimal Transport (JDCOT)

Simultaneous solving of the OT problem on the samples (γs), on the

variables (γv) and learn the classi�er (f T) in target domain

min
γs ,γv ,f T

∑

i,j,k,ℓ

�

α d(xS
i,k, xT

j,ℓ) +L
�

yS
i , f T (xT

j )
�

�

γs
ijγ

v
kℓ

nS × dS nT × dT

f T

γs

Samples cou-

pling

γv

Variables

coupling

Source Target

X SY S X T Y T
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Optimisation : Block Coordinate Descent

Algorithm 2: BCD for JDCOT.

Initialisation : γs = γs
init , γ

v = γv
init , Y T

pred = f T
init (X

T )

for k=1. . .itermax do
Update transport maps:

γs =OT (wS , wT ,αD(X S , X T )⊗γv +L (Y S , Y T
pred ))

γv =OT (w′S , w′T , D(X S , X T )⊗γs)
Update target label: // label propagation

Ŷ T = nTγsY S

Train classi�er f T with (X T , Ŷ T )
Predict target labels : Y T

pred = f T (X T )

10



Experiments



Settings

USPS (d = 16×16, K = 10 classes) MNIST (d = 28×28, K = 10 classes)

nS
train = 300×10 or 30×10 nT

train = 300×10 or 30×10
nbRep = 10 (random sampling / class) nbRep = 10 (random sampling / class)

nT
test = 200×10

Number of labelled observations (total: n∗ / in each class k: nk,∗):

dataset unsupervised semi-supervised partial

USPS nS
∗ = nS nS

∗ = nS nS
k,∗ ∈ {3; 5; 25; 100}

MNIST nT
∗ = 0 nT

k,∗ ∈ {1; 3; 10} nT
k,∗ ∈ {3; 5; 25; 100}

Classi�er f : CNN with 2 convolutional and 2 dense layers

α: 0.01 or 1
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Unsupervised and semi-supervised HDA

nT
k,∗ baseline

nS = nT = 3 000 nS = nT = 300
COOT + LP JDCOT COOT+LP JDCOT

0 - 72.96 ±8.2 77.27 ±9.1 57.27 ±16.2 58.08 ±17.2
1 39.59 ±6.0 75.81 ±4.9 78.45 ±1.1 61.74 ±14.5 69.98 ±2.8
3 56.82 ±4.4 75.35 ±6.5 79.02 ±0.9 69.71 ±7.2 73.19 ±2.4
10 80.49 ±3.1 75.75 ±6.8 88.34 ±1.7 77.25 ±1.7 85.67 ±1.7

Table 1: Mean and standard deviation of the test accuracy (%) over 10 random
samplings for the training sets, considering two sample sizes. nT

∗,k denotes the
number of known labels in each class k, in target domain.
LP = Label Propagation
Baseline = training of f on labelled target data only.

� Improvement w.r.t the baseline score

� Growing performance along with the number of known target labels, even more for

smaller sample size

� More stable than CoOT over repetitions
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Partial HDA

JDCOT nS
∗,k = nT

∗,k 3 5 25 100

source
init 70.9 ±4.3 77.9 ±2.3 92 ±0.7 97.6 ±0.4
�nal 73.5 ±5.3 84.6 ±2.5 94.6 ±0.9 98 ±0.2

target
init 62.7 ±3.2 70.5 ±3.4 90.2 ±0.9 96.1 ±0.7
�nal 68.7 ±5.5 79 ± 3.2 90.3 ±0.5 97 ± 0.2

Table 2: Mean and standard deviation of the test accuracy (%) over 10 random samplings

for the training set. nS = nT = 3 000. n∗,k denotes the number of known labels in each class k,
in each domain. (init) perf. after training on the available target labels, (�nal) perf. after

the whole process

� Improvement of the accuracy both on source and target domains
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Conclusion



Conclusion & on-going/future works

� Joint Distribution Co-Optimal Transport (JDCOT) : heterogeneous
transfer learning using optimal transport

� domain adaptation in the case of source and target spaces of di�erent
features and di�erent dimensions, matching both samples and features
with transport maps and learning the classi�er

� with unsupervised, semi-supervised and partial domain adaptation.

� deep-JDCOT: extension to a deep learning setting (ex. image datasets)

� simultaneous optimisation of 2 transport plans (samples + variables) and
2 features extractors (source + target)

� OT between vector representations of the data, optimisation with
minibatch stochastic gradient descent

� Di�erent class proportions between source and target data

� Weakly-supervised strategy
� Unbalanced / Partial (Co)OT (extra hyper-parameter)
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