JDCOT : an Algorithm for Transfer Learning in Incomparable Domains using Optimal Transport

Marion Jeamart *, Renan Bernard *, Nicolas Courty *, Chloé Friguet * & Valérie Garès** Journée MAS 2022 - Rouen 30/08/2022

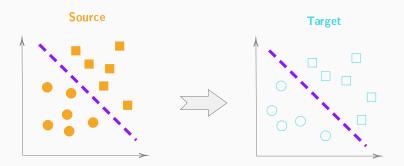
* Univ. Bretagne-Sud, UMR 6074, IRISA, Vannes ** INSA, UMR 6625, IRMAR, Rennes

Introduction

Introduction

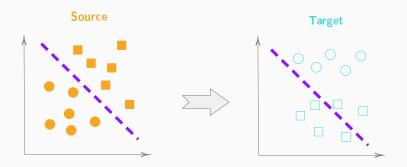
- Usual learning process

 - learn a model on source data $(X^S, Y^S) \in \mathbb{R}^{n^S \times d^S} \times \mathscr{C}$ use the model on target data $(X^T, Y^T) \in \mathbb{R}^{n^T \times d^T} \times \mathscr{C}$



Introduction

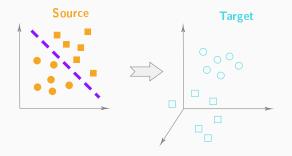
- Usual learning process
 - learn a model on source data $(X^S, Y^S) \in \mathbb{R}^{n^S \times d^S} \times \mathscr{C}$ use the model on target data $(X^T, Y^T) \in \mathbb{R}^{n^T \times d^T} \times \mathscr{C}$



X If source and target data do not have the same distribution?

Domain Adaptation (DA)

- **Transfer** learnt knowledge from source domain to target domain : same task (classification), different (but related) domains
 - trained model becomes more robust when being used on data lying in another domain
 - less labelled data needed in target domain
- Heterogeneous domain adaptation (HDA) : source and target domains are represented by different features spaces



- Strategies
 - Project both data into a common subspace by jointly learning the common subspace and a classifier
 - Jointly perform implicit data reconstruction and learn a classifier
- Supervision settings

	Y^S	Y^T
Unsupervised DA	observed	unobserved
Semi-supervised DA	observed	partially observed
Partial DA	partially observed	partially observed

Our proposal Deal with heterogeneous domain adaptation using optimal transport

OT for DA

- Optimisation method (Peyré and Cuturi, 2018)
 - Distance between two probability measures (Wasserstein distance)
 - Loss in many optimisation problems and approximation algorithms
- Kantorovich formulation to find a coupling matrix γ between

•
$$X^{S} = \{(x_{i}^{S}, w_{i}^{S})_{i=1...n^{S}}, \sum_{i=1}^{n^{S}} w_{i}^{S} = 1\}$$

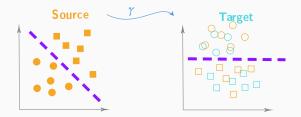
• $X^{T} = \{(x_{j}^{T}, w_{j}^{T})_{j=1...n^{T}}, \sum_{j=1}^{n^{T}} w_{j}^{T} = 1\}$
 $\gamma = OT(w^{S}, w^{T}, C) = \underset{P \in U(w^{S}, w^{T})}{\operatorname{argmin}} \sum_{i,j} C_{ij} P_{ij}$

 $U(w^S, w^T)$: set of matrices $P \in \mathbb{R}^{n^S \times n^T}_+$ so that $\sum_{i=1}^{n^S} P_{ij} = w_j^T$, $\forall j = 1 \dots n^T$ and $\sum_{j=1}^{n^T} P_{ij} = w_i^S$, $\forall i = 1 \dots n^S$

C: a cost matrix

OT for domain adaptation (Courty et al., 2016)

- Solve the OT problem $\gamma = OT(1/n^S; 1/n^T; d(X^S; X^T))$
 - Assumption : existence of a transfer map M from source to target domain distributions so that $\mathbb{P}(Y^T|X^T) = \mathbb{P}(Y^S|M(X^S))$ and $\mathbb{P}(X^T) = \mathbb{P}(M(X^S))$
- Transport source data onto the target domain (barycentric mapping) with γ
- Learn the target classifier with the transported source data



Simultaneous optimisation of the coupling matrix $\pmb{\gamma}$ and the classifier f

$$\min_{\gamma,f} \sum_{i,j} \left[\alpha \ d(\mathbf{x}_i^{\mathcal{S}}, \mathbf{x}_j^{\mathcal{T}}) + \mathcal{L}(\mathbf{y}_i^{\mathcal{S}}, f(\mathbf{x}_j^{\mathcal{T}})) \right] \gamma_{ij}$$

Assumption: existence of a transfer map from source domain joint distribution $\mathbb{P}^{S}(X;Y)$ into target joint distribution $\mathbb{P}^{T}(X;Y)$

Algorithm 1: Block Coordinate Descent (BCD) for JDOT

```
 \begin{array}{l} \mbox{initialization: } Y^T_{pred} = f^T_{init}(X^T) \\ \mbox{for } k=1..itermax \ \mbox{do} \\ \mbox{Update transport map:} \\ \gamma = OT(w^S, w^T, \alpha d(X^S, X^T) + \mathcal{L}(Y^S, Y^T_{pred})) \\ \mbox{Update target |abe|: } // \ \mbox{label propagation} \\ \hat{Y}^T = n_T \gamma Y^S \\ \mbox{train classifier } f \ \mbox{with } (X^T, \hat{Y}^T) \\ \mbox{predict } Y^T_{nred} = f(X^T) \\ \end{array}
```

X Does not address the *heterogeneous* domain adaptation problem

OT for HDA

• Simultaneous solving of the OT problem on the samples (γ^s) and on the variables (γ^ν)

$$\min_{\gamma^{s},\gamma^{v}}\sum_{i,j,k,\ell}d(x^{s}_{i,k},x^{T}_{j,\ell})\gamma^{s}{}_{i,j}\gamma^{v}{}_{k,\ell}$$

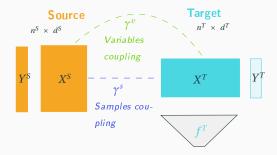
• Use label propagation (with γ^s) to get \hat{Y}^T

 $\ensuremath{\textbf{Our proposal}}$ Use the principle of CoOT to adapt JDOT to the HDA framework

Joint Distribution Co-Optimal Transport (JDCOT)

Simultaneous solving of the OT problem on the samples (γ^s) , on the variables (γ^v) and learn the classifier (f^T) in target domain

$$\min_{\boldsymbol{\gamma}^{s},\boldsymbol{\gamma}^{v},\boldsymbol{\gamma}^{T}}\sum_{i,j,k,\ell} \left[\alpha \ d(\boldsymbol{x}^{s}_{i,k},\boldsymbol{x}^{T}_{j,\ell}) + \mathcal{L}(\boldsymbol{y}^{s}_{i},\boldsymbol{f}^{T}(\boldsymbol{x}^{T}_{j})) \right] \boldsymbol{\gamma}^{s}_{ij} \boldsymbol{\gamma}^{v}_{kl}$$



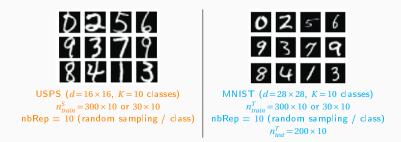
Optimisation : Block Coordinate Descent

Algorithm 2: BCD for JDCOT.

```
 \begin{array}{l} \mbox{Initialisation}: \ensuremath{\gamma^s} = \ensuremath{\gamma^{s}}_{init}, \ensuremath{\gamma^{v}} = \ensuremath{\gamma^{w}}_{init}, \ensuremath{Y^{T}}_{pred} = \ensuremath{f_{init}}^T(X^T) \\ \mbox{for } k=1...itermax \mbox{ do} \\ \mbox{Update transport maps:} \\ \ensuremath{\gamma^{s}} = OT(w^S, w^T, aD(X^S, X^T) \otimes \ensuremath{\gamma^{v}} + \ensuremath{\mathcal{L}}(Y^S, Y^T_{pred})) \\ \ensuremath{\gamma^{v}} = OT(w^S, w^T, D(X^S, X^T) \otimes \ensuremath{\gamma^{s}}) \\ \mbox{Update target label:} \ensuremath{// label propagation} \\ \ensuremath{\hat{\gamma}^{T}} = n^T \ensuremath{\gamma^{s}} S^S \\ \mbox{Train classifier } f^T \ensuremath{with} \ensuremath{(X^T, \hat{Y}^T)} \\ \mbox{Predict target labels}: \ensuremath{Y^T_{pred}} = \ensuremath{f^T}(X^T) \\ \end{array}
```

Experiments

Settings



Number of labelled observations (total: n_* / in each class k: $n_{k,*}$):

dataset	unsupervised	semi-supervised	partia
USPS	$n_*^S = n^S$	$n_{*}^{S} = n^{S}$	$n_{k,*}^S \in \{3; 5; 25; 100\}$
MNIST	$n_{*}^{T} = 0$	$n_{k,*}^T \in \{1; 3; 10\}$	$n_{k,*}^{T} \in \{3; 5; 25; 100\}$

Classifier f: CNN with 2 convolutional and 2 dense layers α : 0.01 or 1

$n_{k,*}^T$ baseline	$n^S = n^T = 3\ 000$		$n^{S} = n^{T} = 300$		
	COOT + LP	JDCOT	COOT+LP	JDCOT	
0	-	72.96 ±8.2	77.27 ±9.1	57.27 ±16.2	58.08 ±17.2
1	39.59 ±6.0	75.81 ±4.9	78.45 ±1.1	61.74 ±14.5	69.98 ±2.8
3	56.82 ±4.4	75.35 ±6.5	79.02 ±0.9	69.71 ±7.2	73.19 ±2.4
10	80.49 ±3.1	75.75 ±6.8	88.34 ±1.7	77.25 ±1.7	85.67 ±1.7

Table 1: Mean and standard deviation of the test accuracy (%) over 10 random samplings for the training sets, considering two sample sizes. $n_{*,k}^T$ denotes the number of known labels in each class k, in target domain.

LP = Label Propagation

Baseline = training of f on labelled target data only.

- Improvement w.r.t the baseline score
- Growing performance along with the number of known target labels, even more for smaller sample size
- More stable than CoOT over repetitions

JDCOT	$n_{*,k}^{S} = n_{*,k}^{T}$	3	5	25	100
source	init	70.9 ±4.3	77.9 ±2.3	92 ±0.7	97.6 ±0.4
	final	73.5 ±5.3	84.6 ±2.5	94.6 ±0.9	98 ±0.2
target	init	62.7 ±3.2	70.5 ±3.4	90.2 ±0.9	96.1 ±0.7
	final	68.7 ±5.5	79 ± 3.2	90.3 ±0.5	97 ± 0.2

Table 2: Mean and standard deviation of the test accuracy (%) over 10 random samplings for the training set. $n^{S} = n^{T} = 3\ 000$. $n_{*,k}$ denotes the number of known labels in each class k, in each domain. (init) perf. after training on the available target labels, (final) perf. after the whole process

• Improvement of the accuracy both on source and target domains

Conclusion

Conclusion & on-going/future works

- Joint Distribution Co-Optimal Transport (JDCOT) : heterogeneous transfer learning using optimal transport
 - domain adaptation in the case of source and target spaces of different features and different dimensions, matching both samples and features with transport maps and learning the classifier
 - with unsupervised, semi-supervised and partial domain adaptation.
- deep-JDCOT: extension to a deep learning setting (ex. image datasets)
 - simultaneous optimisation of 2 transport plans (samples + variables) and 2 features extractors (source + target)
 - OT between vector representations of the data, optimisation with minibatch stochastic gradient descent
- Different class proportions between source and target data
 - Weakly-supervised strategy
 - Unbalanced / Partial (Co)OT (extra hyper-parameter)

References

- Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy, A. (2017). Joint distribution optimal transportation for domain adaptation. volume 30.
- Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2016). Optimal Transport for Domain Adaptation. *IEEE Transactions on Pattern Analysis* and Machine Intelligence, 39(9):1853–1865.
- Peyré, G. and Cuturi, M. (2018). Computational Optimal Transport. Foundations and Trends in Machine Learning, 11(5-6):355-206.
- Redko, I., Vayer, T., Flamary, R., and Courty, N. (2020). CO-Optimal Transport. In *Neural Information Processing Systems (NeurIPS)*, Online, Canada.