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Data and problems

Multivariate distributional time series
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Figure 1: Observations of the age distributions across European union
counttries over years 1995 to 2035 (projected).
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Data and problems

Multivariate distributional time series
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Figure 2: Observations of the age distributions across European union
counttries over years 1995 to 2035 (projected). On the right are the
observations (u): € P([0,1]) along time recorded at i = France.
Lighter curves correspond to more recent years.
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Model set up

Vector auto-regressive model

Let x; € IR, teZ,i=1,...,N, a multivariate time series.
Assume Ex;; = u; exists and time invariant. The VAR model of
order 1 writes as

N
Xip = uj = Y Aj(Xje1 — uj) + €,
j=1

where €j; is a white noise,

Yiye JIANG (IMB) Wasserstein multivariate AR 7/29



Model set up

Vector auto-regressive model

Let x; € IR, teZ,i=1,...,N, a multivariate time series.
Assume Ex;; = u; exists and time invariant. The VAR model of

order 1 writes as

N
—U,=Z (Xj,e—1 — uj) + €it,

. . . N .
where €t is wh!te noise, and ijl Ajj(Xjt—1 — uj) is the
regression operation.
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. . . N .
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Model set up

Vector auto-regressive model

Let x; € IR, teZ,i=1,...,N, a multivariate time series.
Assume Ex;; = u; exists and time invariant. The VAR model of
order 1 writes as

N
—U,=Z (Xj,e—1 — uj) + €it,

. . . N .
where €t is wh!te noise, and ijl Ajj(Xjt—1 — uj) is the
regression operation.

Extension :  xi € IR —> iy eWh(IR).
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Model set up

Related work: Univariate Wasserstein AR model

Chen et al. (2021); Zhang et al. (2021); Zhu and Miiller (2021)
extended the univariate AR model

Xt —u=a(xe—1 — u) + €,

by interpreting the regression operation from the geometric point
of view.
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Model set up

Related work: Univariate Wasserstein AR model
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Figure 3: Geometric interpretation of regression dependency.
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Model set up

Related work: Univariate Wasserstein AR model
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Figure 4. Geometric interpretation of regression dependency. pg is the

time-invariant Fréchet mean of p:, T;_1 is the optimal transport map
which pushforwards pg to pe—1.
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Model set up

Multivariate Wasserstein AR model

Construction of univariate regression operation (ignoring the noise)

Xt = U+ a(xe—1 — u) = pr = Exp, (a(Te—1 — id))
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Multivariate Wasserstein AR model

Construction of univariate regression operation (ignoring the noise)
Xt = U+ a(xe—1 — u) = pr = Exp, (a(Te—1 — id))

Multivariate regression operation

N
Xie — Ui = ) Aj(Xe-1 — 1),
j=1

Yiye JIANG (IMB) Wasserstein multivariate AR 11 /29



Model set up

Multivariate Wasserstein AR model

Construction of univariate regression operation (ignoring the noise)
Xt = U+ a(xe—1 — u) = pr = Exp, (a(Te—1 — id))

Multivariate regression operation
N
Xie — Ui = ) Aj(Xe-1 — 1),
Jj=1

. ref pt _ .
Center Xi = x;z — uj, Sl Ex;: = 0,

- N -
Push Xjir = ijl AiiXit,
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Model set up

- - ref pt .
Center Xj; = Xjp — Uj, = [ijz =" £p Eqpi: = ¢

- N -
Push  x;; = Zj:l AjiXit,
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Model set up

. ref ef pt
Center Xjy = Xxjp — Uj, = fjy =7 Egppic =

Push )?,'t = Zszl A,J')?jt, — I—N’Iit = Expc <Zj:1 A,'J'(-’N-,'J,l — Id))
where 'IN',-yt,l F 1 10 Fe.
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Model set up

. ref ef pt
Center Xjy = Xxjp — Uj, = fjy =7 Egppic =

- N - ~ ~ .
Push Xjy = ijl A,'J'th, = Mjt = Ech (ijl A,'J'(T,'J,l — Id))
where 'IN',-,t,l F 1 10 Fe.
Center a random measure to Lebesgue mean

Fil=FloFg=Flo(Fg™

)

where Fi’*tl, Fij(—é et I?ijtl are respectively quantile functions of

e, Egpic, and fij;, all ~1 are the left continuous inverse.
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Model set up

. ref pt
Center Xjy = Xxjp — Uj, = fjy =7 il Egpis = ¢

Push  %ie = XL, Ayie, — fiie = Expe (S)L1 Ag(Tie 1 — id))
WhereT,t 1—F 10 Fe.
Center a random measure to Lebesgue mean
-1 ~1 1 1y-1
Fi,t = Fi,t oF F (F,@) ’

where Fie ! F, o et I?ftl are respectively quantile functions of
u,-t,IE@u;t, and Jij, all 1 are the left continuous inverse. The
difference operation © is proposed in Zhu and Miiller (2021).
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Model set up

. ref pt
Center Xjy = Xxjp — Uj, = fjy =7 il Egpis = ¢

Push Xip = ZJ 1 AijXir, = pir = Exp, (ZJ 1 A,J(T, 1 — id))
WhereT,t 1—F 10 Fe.

Center a random measure to Lebesgue mean

I?ijtl = Fijt'le = F, 1 o (F; @)_1,

)

where Fie ! F, o et I?ftl are respectively quantile functions of
u,t,IE@u,t, and Jij, all 1 are the left continuous inverse. The
difference operation © is proposed in Zhu and Miiller (2021).

Assumption

All pjp, t€Z,i=1,...,N are supported on [0,1].
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Model set up

Regression operation (igonoring the noise)

N
fiie = Exppep | Y Ajj(Fie-1 — id)
i1
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Model set up

Regression operation (igonoring the noise)
N ~
fiie = Exprep | ) Aj(Fie-1 — fd))
=1

A tractable in estimation:

Vya.c.e W, Exp, |'—°wa is an isometric homeomorphism from
Log, W to W, with the inverse map Log,,.

Vg € Tan,, g € Log, W <= g + id is non-decreasing 7-a.e,
Bigot et al. (2017).
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Model set up

Regression operation (igonoring the noise)
N ~
Bit = EXpyep Z Aij(Fi,tfl - id))
=1

A tractable in estimation:

Vya.c.e W, Exp, |'—°wa is an isometric homeomorphism from
Log, W to W, with the inverse map Log,,.

Vg € Tan,, g € Log, W <= g + id is non-decreasing 7-a.e,
Bigot et al. (2017).

Assumption
Zj"’zlA,-jgland0<A,-j<1. J
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Model set up

Wasserstein multivariate AR Model

N
flie = €t Exprep | O, Ay(Fie1—id) |,
1

where {€;}; ; are i.i.d. random increasing functions, €; is almost
surely independent of w1, 7,j=1,...,N, for all t € Z, and

E[ei:(x)] = x, x € [0,1].

Assumption

ZjN=1Aij<1ando<A,-j<1.
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Model set up

Wasserstein multivariate AR Model

N
[t = €jsF# EXppep Z Ajj(Fit—1 —id) |,
i—1

where {€;}; ; are i.i.d. random increasing functions, €; is almost
surely independent of w1, 7,j=1,...,N, for all t € Z, and

E[ei:(x)] = x, x € [0,1].

Assumption

ZJN=1AU<13”d0<A,-j<1.

Quantile function representation

~

N
Frlmeieo | DAy (Bl —id) +id|,
j=1
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Model set up

Wasserstein multivariate AR Model

N
[t = €jsF# EXppep Z Ajj(Fit—1 —id) |,
i—1

where {€;}; ; are i.i.d. random increasing functions, €; is almost
surely independent of w1, 7,j=1,...,N, for all t € Z, and

E[ei:(x)] = x, x € [0,1].

Assumption

ZJN=1AU<13”d0<A,-j<1.

Quantile function representation

~

N
Filmeno| YA (Fli—id)+id|, A< g
i—1
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Existence, uniqueness and stationarity

© Existence, uniqueness and stationarity
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Existence, uniqueness and stationarity

lterated random function (IRF) system

N
Fi,_tl =€t 0 lZ A,'J' <FJ7_tl_1 — id) + id] , (1)
=1

Admissible as a TS model: existence, uniqueness and stationarity
(additionally Hilbert space).
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Existence, uniqueness and stationarity

lterated random function (IRF) system

N
Fl-eo lZ Ajj (5;1_1 — id) + id] :

j=1
Admissible as a TS model: existence, uniqueness and stationarity
(additionally Hilbert space).
Consider the product metric space

N
(Xv d) = (T7 H ’ HLeb)® ’

where T := Log; ., W + id is the space of all quantile functions
of W, equipped with the norm | - ||, in the tangent space at the
Lebesgue measure. Thus, for any X = (X)M. )Y = (V)N e X

N
d(X7 Y) = Z ”XI - YiHieb'
i=1
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Existence, uniqueness and stationarity

By Wu and Shao (2004), IRF system in a complete, separable
metric space

exp decay rate — stability — existence acis)tr stationarity.
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Existence, uniqueness and stationarity

By Wu and Shao (2004), IRF system in a complete, separable
metric space

exp decay rate — stability — existence acis)tr stationarity.
Assumption

Contraction of the regression operator (at exp decay rate)

L Eleir(x) — €ir(y)]? < [P(x —y)?, ¥x,y € [0,1], te
Z,i=1,...,N,

2. A2 < 1.
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Existence, uniqueness and stationarity

By Wu and Shao (2004), IRF system in a complete, separable
metric space

exp decay rate — stability — existence acis)tr stationarity.
Assumption

Contraction of the regression operator (at exp decay rate)
L E[Ei,t(x) - Gi,t(y)]2 < LZ(X _.y)27 VX,}/ € [07 1], te

Z,i=1...,N,
2. Al < 1. j
Theorem

Under Assumptions N-simplex and contraction, the IRF system (1)

almost surely admits a solution Xy, t € Z, with X; d w, VteZ.
Moreover, if there exists another solution S;, t € Z, then for all
teZ

d
X: = 8¢, almost surely.
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Existence, uniqueness and stationarity

(X, d) with d the induced metric of inner product

N
<Xa Y> = Z <Xi7 Yl'>Leb :
i=1
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Existence, uniqueness and stationarity

(X, d) with d the induced metric of inner product

N
<Xa Y> = Z <Xi7 Yl'>Leb :
i=1

A random process {V;}; in a separable Hilbert space (H,{:,-)) is
said to be stationary if the following properties are satisfied.
0 E|V:* <
@ The Hilbert mean U := E [ V4] does not depend on t.
© The auto-covariance operators defined as
Get—n(V) =EVe = U, V) (Vi_p—U), VeH,

do not depend on t, that is G s (V) = Go,—n(V) for all t.
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Existence, uniqueness and stationarity

(X, d) with d the induced metric of inner product

N
<Xa Y> = Z <Xi7 Yl'>Leb :
i=1

A random process {V;}; in a separable Hilbert space (H,{:,-)) is
said to be stationary if the following properties are satisfied.
O E|V*> <
@ The Hilbert mean U := E [ V4] does not depend on t.
© The auto-covariance operators defined as
Ger n(V) = EVe— U, V) (Ve p—U), Ve,
do not depend on t, that is G s (V) = Go,—n(V) for all t.

Theorem

The unique solution given in Theorem 1 is stationary as a random
process in (X, {-,-)) in the sense of Definition above.
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@ Estimation
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Constrained least-square estimation

T 2

~ o1
A, =argmin — Z
A,';EB_}_ t=1

)

Leb

Fil= Y Ay (Fty—id) —id
j=1

where B! is the constraint set of N-simplex.
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Constrained least-square estimation

T N 2
~ . 1 -1 -—1 . .
A =argm|n72 Fi: —ZA,-J- (I-'J.Jfl—/d) —id|

X 1 B
AieBi =1 j=1 Leb

where B! is the constraint set of N-simplex.

Population mean is also an unknown parameter, we estimate as

Z p‘lt’

and center p; ; by Fﬂ_fl with difference ©
Fli=FloF!'=FloF;,
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Constrained least-square estimation

T 2

~ 1

A; = argmin = Z
AI:EB}‘_ t=1

, (1)

Leb

N
- -1 . .
Fil=Y A (Fly—id) —id
j=1

The optimization problem (1) can be solved by the accelerated
projected gradient descent (Parikh and Boyd, 2014, Chapter 4.3).
The projection onto B? is given in Thai et al. (2015).
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Constrained least-square estimation

T 2

~ o1

A; = argmin = Z
AI:EB_I;_ t=1

Fi- Z Aj (’?j,tl_l - id) —id

The optimization problem (1) can be solved by the accelerated
projected gradient descent (Parikh and Boyd, 2014, Chapter 4.3).
The projection onto B? is given in Thai et al. (2015).

)

Leb

Note that the N-simplex constraint promotes the sparsity in A
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Constrained least-square estimation

Theorem

Assume® the transformed sequence I?,_T 1 t=0,1,..., T checks

Model (1) with Assumption N-simplex true. Suppose additionally
’:-o_ L4 & with  the stationary distribution defined in Theorem 1.
Given Assumption contraction of regression operation holds true.

Then given the true coefficient A satisfies Assumption N-simplex,
we have

A—ADbo.

?Complete statement of theorem sees Jiang (2022)
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Experiments: Age distribution of countries

© Experiments: Age distribution of countries
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Experiments: Age distribution of countries

Figure b: Inferred age structure graph. The non-zero coefficients Aj; are
represented by the weighted directed edges from node j to node i.
Thicker arrow corresponds to larger weights. The blue circles around
nodes represent the weights of self-loop.
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Experiments: Age distribution of countries
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Figure 6: Evolution of age structure from 1996 to 2036 (projected).
Estonia (top left), Latvia(top right), Sweden (bottom left) versus
Norway (bottom right).
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Experiments: Age distribution of countries
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Figure 7: Evolution of age structure from 1996 to 2036 (projected) of
France (left) versus Italy (right).
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Experiments: Age distribution of countries

H From To H

1 Estonia Latvia
2 Sweden Norway

3 Belgium  Germany
4
5

Finland  Netherlands
France Greece

Table 1: Top 5 edges with the largest weights excluding all the
self-loops, based on the data from 1996 to 2036 (projected).
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Experiments: Age distribution of countries

The space W := W5 (IR) has a pseudo-Riemannian structure
(Ambrosio et al., 2008). Let v € W be an absolutely continuous
measure, the tangent space at « is defined as

1 . L2(IR)
Tany = {t(Fy o Fy —id) : peW, t >0} ,

Definition

The exponential map Exp,, : Tan, — W is defined as

Exp, g = (g + id)#~.

Definition

The logarithmic map Log, : W — Tan, is defined as

Log, pu=F,;'oF, —id.
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Experiments: Age distribution of countries

Related work: Univariate Wasserstein AR model

Describe this regression relationship with
AR model of optimal transport (Zhu and Miiller, 2021):
Tit1=€0(a(Ty—id)+id), O0<a<l
AR model of tangent vector (Zhang et al., 2021):
Tiv1—id = (T — id) + €, 0<|af <1,
Tangent vector with regression operator (Chen et al., 2021)

Tt+1 —id = r(Tt - Id) + €4, M Logl@(W) - Logu@(W)

the model in tangent space than is the ordinary AR model for
functional TS in Hilbert space, expect the log image issue

Yiye JIANG (IMB) Wasserstein multivariate AR 29 /29



	Data and problems
	Model set up
	Existence, uniqueness and stationarity
	Estimation
	Experiments: Age distribution of countries
	References

