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The McKean-Vlasov interacting particle system

Model from plasma physics. Numerous applications since its “renaissance” at the
beginning of the 2010’s (opinion dynamics, neurosciences, finance...).

Two key characteristics:

1. binary interactions;

2. the limit equation (in the mean-field scaling) includes a non-linearity.

Usual diffusion process

dXt = b(t,Xt)dt+ σ(t,Xt)dBt,

with

I b drift coefficient ;

I σ diffusion coefficient ;

I (Bt)t≥0 Brownian motion.

McKean-Vlasov dynamics : b and σ depend on the law L(Xt) of (Xt):

dXt = b(t,Xt,L(Xt))dt+ σ(t,Xt,L(Xt))dBt.

Today, σ ≡ Id (the identity matrix) to simplify.
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A PDE interpretation of the McKean-Vlasov equation

McKean-Vlasov SDE

Xt = X0 +

∫ t

0
b
(
Xs,L(Xs)

)
ds+Bt, t ≥ 0

with L(X0) = µ0 for some distribution µ0.

Starting from µ0, the flow of marginal laws (m(t, µ0) := L(Xt))t≥0 satisfies a
nonlinear Fokker-Planck equation:

∂tm(t, µ) =
1

2
4m(t, µ)− div

[
m(t, µ)b(·,m(t, µ))

]
, t ≥ 0,

m(0, µ) = µ,

at least in a distributional sense.

This is a PDE interpretation of the McKean-Vlasov SDE.
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The particle system: first-order, MF interaction and noise

Key question: deriving the previous McKean-Vlasov SDE from a microscopic
system. Given N particles (agents), can we obtain the previous SDE as a limit ?
In which sense ?

For particles in the torus Td:{
Y i,Nt = Y i,N0 +

∫ t
0 b(Y

i,N
s , µNs )ds+Bit, t ≥ 0, 1 ≤ i ≤ N,

µNs := 1
N

∑N
i=1 δY i,N

s
,

where

+ (Y i,N )Ni=1 are the positions;

+ µNs empirical measure at time s;

+ b : Td × P(Td)→ Rd is an interaction potential and the mean-field scaling is
considered.

Additionally: smooth b, (Y i,N0 )1≤i≤N ∼ µ⊗N0 (i.i.d. initial distributions). The
goal is to relate this particle system to the McKean-Vlasov SDE.
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Assumptions on b

H-stable potential (Carrillo, Gvalani, Pavliotis, Schlichting 2020)

b(x,m) = −κ
∫
Td
∇W (x− y)m(dy), x ∈ Td,m ∈ P(Td)

for κ > 0 (equal to 1 in what follows for simplicity) and W smooth,
coordinate-wise even:

W (x1, · · · ,−xi, . . . , xd) = W (x1, . . . , xi, . . . , xd), (x1, . . . , xd) ∈ Td.

For (Ŵn)n∈Zd the Fourier coefficients of W , we assume for any n ∈ Zd, Ŵn ≥ 0.

Consequence: the Lebesgue measure on Td, LebTd is

4 the unique invariant measure for the McKean-Vlasov equation;

4 exponentially stable, i.e. there exists C, λ > 0 constants s.t. for all t ≥ 0,

‖m(t, µ)− LebTd‖TV ≤ Ce−λt.
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Statistical description and mean-field limit

N � 1, FN (t, x1, . . . , xN ) probability density on the N torus (Td)N at time t ≥ 0
and F 1

N first marginal

F 1
N (t, z) =

∫
(Td)N−1

FN (t, z, z2, . . . , zN )dz2 . . . dzN .

When N →∞, in view of Boltzmann chaos assumption one wants to neglect
the correlations and to obtain, in the limit N →∞, that F 1

N behaves like the
solution of the McKean-Vlasov SDE.

Can we justify this convergence ?
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BBGKY, MV version: a formal expansion

FN solves a forward Kolmogorov equation, where x̄ = (x1, . . . , xN ) ∈ (Td)N

∂tF
N (x̄) =

1

2
4FN (x̄) +

N∑
i=1

divxi

(
FN (x̄)

1

N

N∑
j=1

∇W (xj − xi)
)
.

Integrating with respect to x2, . . . , xN , writing FkN for the k-th marginal, and
using the coordinate-wise symmetry:

∂tF
1
N (x) =

1

2
4F 1

N (x) + divx
(∫

Td
∇W (y − x)F 2

N (x, y)dy
)
.

Key point: at time 0, FN (0, ·) = µ⊗N0 (·) so in particular

F 2
N (0, x, y) = F 1

N (0, x)F 1
N (0, y).

Not true anymore at time t > 0 ! But one expects
F 2
N (x, y) = F 1

N (x)F 1
N (y) +G2

N (x, y) where G2
N is the two-particles correlation

function with G2
N → 0 as N →∞.

Then → PDE version of the McKean-Vlasov equation on Td

∂tf(x) =
1

2
4f(x)− divx

(
b
(
x, f

)
f(x)

)
.
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Propagation of chaos I: qualitative convergence

G2
N → 0 as N →∞ ? Are Y 1,N and Y 2,N “independent” at all time ? In what

sense ?

In general, expect that on [0, T ], T > 0, and for any fixed k ∈ {1, . . . , N},

(Y 1,N , . . . , Y k,N ) =⇒ (X1, . . . , Xk),

where (Xi)i are i.i.d. copies of solutions to the MVSDE, weakly in
C([0, T ], (Td)k). This gives

R convergence towards the limit equation

R asymptotic independence.

I For b Lipschitz (w.r.t. the topology of Td × P(Td)), Sznitman’s coupling, see
Sznitman (1991), Lacker (2018)...

I Other approaches: tightness of (L(µNt ) ∈ P(P(Td)))0≤t≤T . Then

(L(µNt ))0≤t≤T converges weakly to δL(Xt)0≤t≤T
.
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Propagation of chaos II: strong errors

Two types of results, quantifying strong and weak errors. Second aspect to
quantify: uniformity in time ? Strong errors: convergence in some Wasserstein
norm, e.g.

sup
t≥0

W1

(
FkN (t, ·),m(t, µ0)⊗k

)
= O

( 1

N
1
2

)
.

Recent uniform in times results:

I Malrieu 2001 (W convex);

I Durmus-Eberle-Guillin-Zimmer 2020 for small interaction;

I Guillin-Le Bris-Monmarché 2021 for more singular interactions (allowing to
treat the Biot-Savart kernel).

Jabin-Wang (2018): non-uniform in time estimates for singular interaction,
starting point of several papers.
Other approach to strong error: central limit theorem (Sznitman, Méléard...).
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Propagation of chaos III: weak errors

Focus on the statistical behavior of µNt . Goal: deriving rates of convergence (in t
and N) for

E
[∣∣Φ(µNt )− Φ(m(t, µ0))

∣∣],
where Φ : P(Td)→ R is a test function. Typically Φ is

e polynomial: Mischler-Mouhot-Wennberg 2015;

e linear: Bencheikh-Jourdain 2019 (more general b).

Rate O
(

1
N

)
not uniform in time.

For the torus case, recent results of Delarue-Tse (2021): under regularity
assumptions on b and Φ, there exists C > 0 such that for all µ0 ∈ P(Td),

sup
t≥0

E
[∣∣Φ(µNt )− Φ(m(t, µ0))

∣∣] ≤ C

N
.
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Back to the marginals

Recall:

∂tF
1
N (x) =

1

2
4F 1

N (x) + divx
(∫

Td
∇W (y − x)F 2

N (x, y)dy
)
.

Writing F 2
N (x, y) = F 1

N (x)F 1
N (y) +G2

N (x, y), the previous results show

G2
N = O( 1

N
) in some weak sense → McKean-Vlasov equation.
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Beyond mean-fields (Bogolyubov corrections?)
What if we keep G2

N ? The equation for F 1
N depending on F 2

N also writes

∂tF
1
N (x) =

1

2
4F 1

N (x)− divx
(
b(x, F 1

N )F 1
N (x)

)
+ divx

( 1

N

∫
Td
∇W (x− y)(NG2

N )(x, y)dy
)
.

Assume that G3
N = O

(
1
N2

)
, then the equation for F 2

N is

∂tF
2
N (x1, x2) =

1

2
4F 2

N (x1, x2)−
∑

1≤i 6=j≤2

divxi

{
−

1

N
∇W (xi − xj)F 1

N (xi)F
1
N (xj)

+
N − 1

N
b(xi, F

1
N )F 1

N (xi)F
1
N (xj) + 3

N − 1

N
b(xi, F

1
N )F 2

N (xi, xj)

− 3
N − 1

N

∫
Td
∇W (x− xi)F 2

N (xi, x)dxF 1
N (xj)

− 3
N − 1

N

∫
Td
∇W (x− xi)F 2

N (x, xj)dxF
1
N (x1)

}
+O

( 1

N2

)
.

Since G2
N = F 2

N − (F 1
N )⊗2 → closed form for the evolution of F 1

N and G2
N . Initial

data

1. G2
N|t=0

= 0;

2. F 1
N|t=0

= µ0.
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Controlling the correlations

Expect the contribution of G2
N to be of order O

(
1
N

)
. With this contribution:

correction to this mean-field limit, provided that G3
N = O

(
1
N2

)
. And so on...

Our work: in some weak sense and uniformly in time

Gm+1
N = O

( 1

Nm

)
for all m ≥ 1.
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A brief reminder on cumulants

(Joint) cumulants of (Z1, . . . , Zn) measure the interactions between the variables:
for

K(t1, . . . , tn) = logE
[
e
∑n

j=1 tjZj

]
,

κn[Z1, . . . , Zn] =
dn

dt1 . . . dtn
K(t1, . . . , tn)|t1=···=tn=0.

We write
κm(X) = κm(X, . . . ,X).

Recall in particular that for all X ∈ L4(Ω),

κ2(X) = Var(X), κ3(X) = E
[
(X − E[X])3

]
.

But of course it is not always that easy

κ4(X) = E
[
(X − E[X])4

]
− 3Var(X)2.
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Main result

Our main result is the following:

Theorem (B.-Duerinckx 2022+)
Assume that b is given by a smooth, H-stable potential W , and that
Φ : P(Td)→ R is smooth. Then, for all m ≥ 1, there exists a constant C > 0 such
that, for any µ0 ∈ P(Td),

sup
t≥0

κm+1
[
Φ(µNt )

]
≤

C

Nm
.

- Φ smooth in the sense of linear derivatives w.r.t. the measure.

- Explicit dependency of C in the derivatives of Φ.

Possible to relate κm+1[Φ(µNt )] to the norm of Gm+1
N when Φ(µ) =

∫
Td ϕ(x)µ(dx)

with ϕ smooth.
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The sources of randomness

Recall µNt = 1
N

∑N
i=1 δY i,N

t
for all t ≥ 0. Let Φ : P(Td)→ R. Weak formulation

of the result for G2
N :

Var
[
Φ(µNt )

]
= O

( 1

N

)
,

uniformly in time.

Two sources of randomness, treated separately:

â Brownian motions;

â initial distributions.

E for the global randomness, E◦ for the one related to the initial data, EB for the
one related to the Brownian motions. And so on, we write Var, Var◦, VarB , κ, κ◦,
κB ...

Splitting between those two sources:

Var
[
Φ(µNt )

]
= Var◦

[
EB [Φ(µNt )]

]
+ E◦

[
VarB(Φ(µNt ))

]
.

We will prove

I EB [Φ(µNt )] = Φ(m(t, µN0 )) +O
(

1
N

)
;

I VarB(Φ(µNt )) = O
(

1
N

)
.
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Our tools

Specific tools for each type of randomness.

â Expansions in the Wasserstein space, strongly inspired by recent works of
Delarue-Tse (2021), Chassagneux-Szpruch-Tse (2019)...

â Glauber calculus to handle cumulants with respect to the initial distribution.
Used by Duerinckx (2021) for the Vlasov system.

In both cases, ergodic estimates to obtain the uniform control in time.
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Linear functional derivatives

Let F : P(Td)→ R. We say that F is continuously differentiable if there exists a
continuous function δF

δm
: P(Td)× Td → R such that, for any µ, µ′ ∈ P(Td),

F (µ)− F (µ′) =

∫ 1

0

∫
Td

δF

δm

(
sµ+ (1− s)µ′, y

)
(µ− µ′)(dy)ds.

The definition holds up to some additive constant, so we require∫
Td

δF

δm
(µ, y)µ(dy) = 0.

Wasserstein derivative: for y ∈ Td, µ ∈ P(Td),

∂µF (µ)(y) = ∂y
δF

δm
(µ, y).
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Glauber calculus

Let γ : (Td)N → R. Glauber derivative with respect to Y 1,N
0 :

D1
◦[γ(Y 1,N

0 , . . . , Y N,N0 )] = γ(Y 1,N
0 , . . . , Y N,N0 )−

∫
Td
γ(z, . . . , Y N,N0 )µ0(dz)

=⇒ measure the sensitivity of γ with respect to Y 1,N
0 .

For any ψ : P(Td)→ R admitting linear derivative, any j ∈ [N ],

Dj◦[ψ(µN0 )] =
1

N

∫ 1

0

δψ

δm

(
1
N

∑
i 6=j

δ
Y

i,N
0

+ s
N
δ
Y

j,N
0

+ 1−s
N
δz , Y

j,N
0

)
µ0(dz)ds

−
1

N

∫ 1

0

δψ

δm

(
1
N

∑
i 6=j

δ
Y

i,N
0

+ s
N
δ
Y

j,N
0

+ 1−s
N
δz , z

)
µ0(dz)ds

=⇒ Dj0[ψ(µN0 )] = O
(

1
N

)
provided good control of δψ

δm
.

Efron-Stein’s inequality:

Var◦[Y ] ≤ E◦
[ N∑
j=1

∣∣Dj◦[Y ]
∣∣2].

Similar Poincaré inequality for higher-order cumulants.
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The sources of randomness

Recall µNt = 1
N

∑N
i=1 δY i,N

t
for all t ≥ 0. Let Φ : P(Td)→ R. Weak formulation

of the result for G2
N :

Var
[
Φ(µNt )

]
= O

( 1

N

)
,

uniformly in time.

Two sources of randomness, treated separately:

â Brownian motions;

â initial distributions.
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Var
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Φ(µNt )

]
= Var◦

[
EB [Φ(µNt )]

]
+ E◦

[
VarB(Φ(µNt ))

]
.

We will prove

I EB [Φ(µNt )] = Φ(m(t, µN0 )) +O
(

1
N

)
;

I VarB(Φ(µNt )) = O
(

1
N

)
.
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The master equation

For any Φ : P(Td)→ R, write UΦ(t, µ) = Φ(m(t, µ)) for t ≥ 0, µ ∈ P(Td). Then,
from Buckdahn-Li-Peng-Rainer (2017), UΦ satisfies the master equation

∂tUΦ(t, µ) =
∫
Td

[∑d
i=1 ∂xi

δUΦ
δm

(t, µ, x)bi(x, µ)

+ 1
2

∑d
i,j=1 ∂

2
xixj

δUΦ
δm

(t, µ, x)
]
µ(dx) t ≥ 0,

UΦ(0, µ) = Φ(µ)

→ expand m(t, µ) along the dynamics. From Chassagneux-Szpruch-Tse (2019), we
have

EB [Φ(µNt )] = UΦ(t, µN0 ) +
1

2N

∫ t

0

∫
Td

EB
[
Tr[∂2

µUΦ(t− s, µNs , v, v)
]
µNs (dv)ds,

where ∂µUΦ(t− s, µ, y) = ∂y
δU
δm

(t− s, µ, y).
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Pushing the expansion further

Set, for 0 ≤ s ≤ t, µ ∈ P(Td),

Φ(1)
(
(t, s), µ

)
=

∫
Td

Tr
[
∂2
µUΦ

(
t− s, µ, y, y)

]
µ(dy),

and then set, for 0 ≤ u ≤ s ≤ t,

U(1)
Φ

(
(t, s, u), µ) = Φ(1)

(
(t, s),m(s− u, µ)

)
.

→ use U(1)
Φ to push the expansion.

EB [Φ(µNt )] = UΦ(t, µN0 ) +
1

2N

∫ t

0
U(1)

Φ

(
(t, s, 0), µN0

)
ds

+
1

4N2

∫ t

0

∫ s

0

∫
Td

Tr
[
∂2
µU

(1)
Φ

(
(t, s, u), µNu , y, y

)]
µNu (dy)duds.

Explicit formulas relating ∂2
µU

(1)
Φ with Wasserstein derivatives of Φ evaluated at

solutions of linearized parabolic equations. In particular, using ergodic estimates
for those solutions:

sup
µ∈P(Td)

∫
Td

∫ t

0

∫ s

0
Tr
[
∂2
µU

(1)
Φ

(
(t, s, u), µ, y, y

)]
µ(dy)duds = O(1).
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Treating the Brownian cumulants

VarB [Φ(µNt )] = EB [Φ(µNt )2]− EB [Φ(µNt )]2

= UΦ2 (t, µN0 ) +
1

2N

∫ t

0
U(1)

Φ2 ((t, s, 0), µN0 )ds

−
(
UΦ(t, µN0 ) +

1

2N

∫ t

0
U(1)

Φ ((t, s, 0), µN0 )ds
)2

+O
( 1

N2

)
and UΦ2 (t, µN0 ) = Φ2(m(t, µN0 )) = UΦ(m(t, µN0 ))2 so VarB [Φ(µNt )] = O

(
1
N

)
.

We can do much more ! Identifying precisely the O
(

1
N

)
term: since

∂2
µf

2(ν)(x, x) = 2f(ν)
(
∂2
µf(ν)(x, x)) + 2

(
∂µf(ν)(x)

)2
U(1)

Φ2 ((t, s, 0), µN0 ) = 2UΦ(t, µN0 )U(1)
Φ ((t, s, 0), µN0 )

+

∫
Td

∣∣∂µUΦ(t− s,m(s, µN0 ))(y)
∣∣2m(s, µN0 )(dy).

Hence,

VarB [Φ(µNt )] =
1

N

∫ t

0

∫
Td

∣∣∣∂µUΦ(t− s,m(s, µN0 ), y)
∣∣∣2m(s, µN0 )(dy)ds+O

( 1

N2

)
.

Can apply Glauber calculus to this leading term !
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Additional results

â Precise regularity in Φ for the constant. Precise regularity in b ?

â Whole space with a (nice) confining potential.

â Second-order system (in the whole space). Only difference: ergodic estimates
for uniformity in time.

â Other application: via Stein’s method and the Brownian expansion → CLT.

Thank you for your attention !
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