Beyond the mean-field limit for the McKean-Vlasov particle system: Uniform in time estimates for the cumulants

Armand Bernou (LJLL, Sorbonne Université)
Joint work with Mitia Duerinckx (FNRS)

Journée MAS, Rouen

30th August, 2022

The McKean-Vlasov interacting particle system

Model from plasma physics. Numerous applications since its "renaissance" at the beginning of the 2010's (opinion dynamics, neurosciences, finance...).

The McKean-Vlasov interacting particle system

Model from plasma physics. Numerous applications since its "renaissance" at the beginning of the 2010's (opinion dynamics, neurosciences, finance...).

Two key characteristics:

1. binary interactions;
2. the limit equation (in the mean-field scaling) includes a non-linearity.

The McKean-Vlasov interacting particle system

Model from plasma physics. Numerous applications since its "renaissance" at the beginning of the 2010's (opinion dynamics, neurosciences, finance...).

Two key characteristics:

1. binary interactions;
2. the limit equation (in the mean-field scaling) includes a non-linearity.

Usual diffusion process

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}
$$

with

- b drift coefficient;
- σ diffusion coefficient;
- $\left(B_{t}\right)_{t \geq 0}$ Brownian motion.

The McKean-Vlasov interacting particle system

Model from plasma physics. Numerous applications since its "renaissance" at the beginning of the 2010's (opinion dynamics, neurosciences, finance...).

Two key characteristics:

1. binary interactions;
2. the limit equation (in the mean-field scaling) includes a non-linearity.

Usual diffusion process

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}
$$

with

- b drift coefficient;
- σ diffusion coefficient;
- $\left(B_{t}\right)_{t \geq 0}$ Brownian motion.

McKean-Vlasov dynamics : b and σ depend on the law $\mathcal{L}\left(X_{t}\right)$ of $\left(X_{t}\right)$:

$$
d X_{t}=b\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+\sigma\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d B_{t} .
$$

The McKean-Vlasov interacting particle system

Model from plasma physics. Numerous applications since its "renaissance" at the beginning of the 2010's (opinion dynamics, neurosciences, finance...).

Two key characteristics:

1. binary interactions;
2. the limit equation (in the mean-field scaling) includes a non-linearity.

Usual diffusion process

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}
$$

with

- b drift coefficient;
- σ diffusion coefficient;
- $\left(B_{t}\right)_{t \geq 0}$ Brownian motion.

McKean-Vlasov dynamics : b and σ depend on the law $\mathcal{L}\left(X_{t}\right)$ of $\left(X_{t}\right)$:

$$
d X_{t}=b\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+\sigma\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d B_{t} .
$$

Today, $\sigma \equiv I_{d}$ (the identity matrix) to simplify.

A PDE interpretation of the McKean-Vlasov equation

McKean-Vlasov SDE

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right) \mathrm{d} s+B_{t}, \quad t \geq 0
$$

with $\mathcal{L}\left(X_{0}\right)=\mu_{0}$ for some distribution μ_{0}.

A PDE interpretation of the McKean-Vlasov equation

McKean-Vlasov SDE

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right) \mathrm{d} s+B_{t}, \quad t \geq 0
$$

with $\mathcal{L}\left(X_{0}\right)=\mu_{0}$ for some distribution μ_{0}.
Starting from μ_{0}, the flow of marginal laws $\left(m\left(t, \mu_{0}\right):=\mathcal{L}\left(X_{t}\right)\right)_{t \geq 0}$ satisfies a nonlinear Fokker-Planck equation:

$$
\begin{aligned}
& \partial_{t} m(t, \mu)=\frac{1}{2} \triangle m(t, \mu)-\operatorname{div}[m(t, \mu) b(\cdot, m(t, \mu))], \quad t \geq 0, \\
& m(0, \mu)=\mu
\end{aligned}
$$

at least in a distributional sense.

A PDE interpretation of the McKean-Vlasov equation

McKean-Vlasov SDE

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right) \mathrm{d} s+B_{t}, \quad t \geq 0
$$

with $\mathcal{L}\left(X_{0}\right)=\mu_{0}$ for some distribution μ_{0}.
Starting from μ_{0}, the flow of marginal laws $\left(m\left(t, \mu_{0}\right):=\mathcal{L}\left(X_{t}\right)\right)_{t \geq 0}$ satisfies a nonlinear Fokker-Planck equation:

$$
\begin{aligned}
& \partial_{t} m(t, \mu)=\frac{1}{2} \triangle m(t, \mu)-\operatorname{div}[m(t, \mu) b(\cdot, m(t, \mu))], \quad t \geq 0 \\
& m(0, \mu)=\mu
\end{aligned}
$$

at least in a distributional sense.
This is a PDE interpretation of the McKean-Vlasov SDE.

The particle system: first-order, MF interaction and noise

Key question: deriving the previous McKean-Vlasov SDE from a microscopic system. Given N particles (agents), can we obtain the previous SDE as a limit? In which sense?

The particle system: first-order, MF interaction and noise

Key question: deriving the previous McKean-Vlasov SDE from a microscopic system. Given N particles (agents), can we obtain the previous SDE as a limit ? In which sense?

For particles in the torus \mathbb{T}^{d} :

$$
\left\{\begin{array}{l}
Y_{t}^{i, N}=Y_{0}^{i, N}+\int_{0}^{t} b\left(Y_{s}^{i, N}, \mu_{s}^{N}\right) \mathrm{d} s+B_{t}^{i}, \quad t \geq 0, \quad 1 \leq i \leq N \\
\mu_{s}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_{s}^{i, N}}
\end{array}\right.
$$

where
$\left(Y^{i, N}\right)_{i=1}^{N}$ are the positions;
μ_{s}^{N} empirical measure at time s;
$b: \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}^{d}$ is an interaction potential and the mean-field scaling is considered.

The particle system: first-order, MF interaction and noise

Key question: deriving the previous McKean-Vlasov SDE from a microscopic system. Given N particles (agents), can we obtain the previous SDE as a limit? In which sense?

For particles in the torus \mathbb{T}^{d} :

$$
\left\{\begin{array}{l}
Y_{t}^{i, N}=Y_{0}^{i, N}+\int_{0}^{t} b\left(Y_{s}^{i, N}, \mu_{s}^{N}\right) \mathrm{d} s+B_{t}^{i}, \quad t \geq 0, \quad 1 \leq i \leq N \\
\mu_{s}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_{s}^{i, N}}
\end{array}\right.
$$

where
$\left(Y^{i, N}\right)_{i=1}^{N}$ are the positions;
μ_{s}^{N} empirical measure at time s;
$b: \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}^{d}$ is an interaction potential and the mean-field scaling is considered.

Additionally: smooth $b,\left(Y_{0}^{i, N}\right)_{1 \leq i \leq N} \sim \mu_{0}^{\otimes N}$ (i.i.d. initial distributions). The goal is to relate this particle system to the McKean-Vlasov SDE.

Assumptions on b

H-stable potential (Carrillo, Gvalani, Pavliotis, Schlichting 2020)

$$
b(x, m)=-\kappa \int_{\mathbb{T}^{d}} \nabla W(x-y) m(\mathrm{~d} y), \quad x \in \mathbb{T}^{d}, m \in \mathcal{P}\left(\mathbb{T}^{d}\right)
$$

for $\kappa>0$ (equal to 1 in what follows for simplicity) and W smooth, coordinate-wise even:

$$
W\left(x_{1}, \cdots,-x_{i}, \ldots, x_{d}\right)=W\left(x_{1}, \ldots, x_{i}, \ldots, x_{d}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{T}^{d}
$$

Assumptions on b

H-stable potential (Carrillo, Gvalani, Pavliotis, Schlichting 2020)

$$
b(x, m)=-\kappa \int_{\mathbb{T}^{d}} \nabla W(x-y) m(\mathrm{~d} y), \quad x \in \mathbb{T}^{d}, m \in \mathcal{P}\left(\mathbb{T}^{d}\right)
$$

for $\kappa>0$ (equal to 1 in what follows for simplicity) and W smooth, coordinate-wise even:

$$
W\left(x_{1}, \cdots,-x_{i}, \ldots, x_{d}\right)=W\left(x_{1}, \ldots, x_{i}, \ldots, x_{d}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{T}^{d}
$$

For $\left(\hat{W}^{n}\right)_{n \in \mathbb{Z}^{d}}$ the Fourier coefficients of W, we assume for any $n \in \mathbb{Z}^{d}, \hat{W}^{n} \geq 0$.

Assumptions on b

H-stable potential (Carrillo, Gvalani, Pavliotis, Schlichting 2020)

$$
b(x, m)=-\kappa \int_{\mathbb{T}^{d}} \nabla W(x-y) m(\mathrm{~d} y), \quad x \in \mathbb{T}^{d}, m \in \mathcal{P}\left(\mathbb{T}^{d}\right)
$$

for $\kappa>0$ (equal to 1 in what follows for simplicity) and W smooth, coordinate-wise even:

$$
W\left(x_{1}, \cdots,-x_{i}, \ldots, x_{d}\right)=W\left(x_{1}, \ldots, x_{i}, \ldots, x_{d}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{T}^{d}
$$

For $\left(\hat{W}^{n}\right)_{n \in \mathbb{Z}^{d}}$ the Fourier coefficients of W, we assume for any $n \in \mathbb{Z}^{d}, \hat{W}^{n} \geq 0$.
Consequence: the Lebesgue measure on $\mathbb{T}^{d}, \mathrm{Leb}_{\mathbb{T}^{d}}$ is
\checkmark the unique invariant measure for the McKean-Vlasov equation;
$\boldsymbol{\checkmark}$ exponentially stable, i.e. there exists $C, \lambda>0$ constants s.t. for all $t \geq 0$,

$$
\left\|m(t, \mu)-\operatorname{Leb}_{\mathbb{T}^{d}}\right\|_{T V} \leq C e^{-\lambda t}
$$

Statistical description and mean-field limit

$N \gg 1, F_{N}\left(t, x_{1}, \ldots, x_{N}\right)$ probability density on the N torus $\left(\mathbb{T}^{d}\right)^{N}$ at time $t \geq 0$ and F_{N}^{1} first marginal

$$
F_{N}^{1}(t, z)=\int_{\left(\mathbb{T}^{d}\right)^{N-1}} F_{N}\left(t, z, z_{2}, \ldots, z_{N}\right) \mathrm{d} z_{2} \ldots \mathrm{~d} z_{N}
$$

Statistical description and mean-field limit

$N \gg 1, F_{N}\left(t, x_{1}, \ldots, x_{N}\right)$ probability density on the N torus $\left(\mathbb{T}^{d}\right)^{N}$ at time $t \geq 0$ and F_{N}^{1} first marginal

$$
F_{N}^{1}(t, z)=\int_{\left(\mathbb{T}^{d}\right)^{N-1}} F_{N}\left(t, z, z_{2}, \ldots, z_{N}\right) \mathrm{d} z_{2} \ldots \mathrm{~d} z_{N}
$$

When $N \rightarrow \infty$, in view of Boltzmann chaos assumption one wants to neglect the correlations and to obtain, in the limit $N \rightarrow \infty$, that F_{N}^{1} behaves like the solution of the McKean-Vlasov SDE.

Statistical description and mean-field limit

$N \gg 1, F_{N}\left(t, x_{1}, \ldots, x_{N}\right)$ probability density on the N torus $\left(\mathbb{T}^{d}\right)^{N}$ at time $t \geq 0$ and F_{N}^{1} first marginal

$$
F_{N}^{1}(t, z)=\int_{\left(\mathbb{T}^{d}\right)^{N-1}} F_{N}\left(t, z, z_{2}, \ldots, z_{N}\right) \mathrm{d} z_{2} \ldots \mathrm{~d} z_{N}
$$

When $N \rightarrow \infty$, in view of Boltzmann chaos assumption one wants to neglect the correlations and to obtain, in the limit $N \rightarrow \infty$, that F_{N}^{1} behaves like the solution of the McKean-Vlasov SDE.

Can we justify this convergence ?

BBGKY, MV version: a formal expansion

F^{N} solves a forward Kolmogorov equation, where $\bar{x}=\left(x_{1}, \ldots, x_{N}\right) \in\left(\mathbb{T}^{d}\right)^{N}$

$$
\partial_{t} F^{N}(\bar{x})=\frac{1}{2} \triangle F^{N}(\bar{x})+\sum_{i=1}^{N} \operatorname{div}_{x_{i}}\left(F^{N}(\bar{x}) \frac{1}{N} \sum_{j=1}^{N} \nabla W\left(x_{j}-x_{i}\right)\right)
$$

BBGKY, MV version: a formal expansion

F^{N} solves a forward Kolmogorov equation, where $\bar{x}=\left(x_{1}, \ldots, x_{N}\right) \in\left(\mathbb{T}^{d}\right)^{N}$

$$
\partial_{t} F^{N}(\bar{x})=\frac{1}{2} \triangle F^{N}(\bar{x})+\sum_{i=1}^{N} \operatorname{div}_{x_{i}}\left(F^{N}(\bar{x}) \frac{1}{N} \sum_{j=1}^{N} \nabla W\left(x_{j}-x_{i}\right)\right) .
$$

Integrating with respect to x_{2}, \ldots, x_{N}, writing F_{N}^{k} for the k-th marginal, and using the coordinate-wise symmetry:

$$
\partial_{t} F_{N}^{1}(x)=\frac{1}{2} \Delta F_{N}^{1}(x)+\operatorname{div}_{x}\left(\int_{\mathbb{T}^{d}} \nabla W(y-x) F_{N}^{2}(x, y) \mathrm{d} y\right) .
$$

BBGKY, MV version: a formal expansion

F^{N} solves a forward Kolmogorov equation, where $\bar{x}=\left(x_{1}, \ldots, x_{N}\right) \in\left(\mathbb{T}^{d}\right)^{N}$

$$
\partial_{t} F^{N}(\bar{x})=\frac{1}{2} \triangle F^{N}(\bar{x})+\sum_{i=1}^{N} \operatorname{div}_{x_{i}}\left(F^{N}(\bar{x}) \frac{1}{N} \sum_{j=1}^{N} \nabla W\left(x_{j}-x_{i}\right)\right) .
$$

Integrating with respect to x_{2}, \ldots, x_{N}, writing F_{N}^{k} for the k-th marginal, and using the coordinate-wise symmetry:

$$
\partial_{t} F_{N}^{1}(x)=\frac{1}{2} \Delta F_{N}^{1}(x)+\operatorname{div}_{x}\left(\int_{\mathbb{T}^{d}} \nabla W(y-x) F_{N}^{2}(x, y) \mathrm{d} y\right) .
$$

Key point: at time $0, F_{N}(0, \cdot)=\mu_{0}^{\otimes N}(\cdot)$ so in particular

$$
F_{N}^{2}(0, x, y)=F_{N}^{1}(0, x) F_{N}^{1}(0, y)
$$

Not true anymore at time $t>0$! But one expects $F_{N}^{2}(x, y)=F_{N}^{1}(x) F_{N}^{1}(y)+G_{N}^{2}(x, y)$ where G_{N}^{2} is the two-particles correlation function with $G_{N}^{2} \rightarrow 0$ as $N \rightarrow \infty$.

BBGKY, MV version: a formal expansion

F^{N} solves a forward Kolmogorov equation, where $\bar{x}=\left(x_{1}, \ldots, x_{N}\right) \in\left(\mathbb{T}^{d}\right)^{N}$

$$
\partial_{t} F^{N}(\bar{x})=\frac{1}{2} \triangle F^{N}(\bar{x})+\sum_{i=1}^{N} \operatorname{div}_{x_{i}}\left(F^{N}(\bar{x}) \frac{1}{N} \sum_{j=1}^{N} \nabla W\left(x_{j}-x_{i}\right)\right)
$$

Integrating with respect to x_{2}, \ldots, x_{N}, writing F_{N}^{k} for the k-th marginal, and using the coordinate-wise symmetry:

$$
\partial_{t} F_{N}^{1}(x)=\frac{1}{2} \Delta F_{N}^{1}(x)+\operatorname{div}_{x}\left(\int_{\mathbb{T}^{d}} \nabla W(y-x) F_{N}^{2}(x, y) \mathrm{d} y\right) .
$$

Key point: at time $0, F_{N}(0, \cdot)=\mu_{0}^{\otimes N}(\cdot)$ so in particular

$$
F_{N}^{2}(0, x, y)=F_{N}^{1}(0, x) F_{N}^{1}(0, y)
$$

Not true anymore at time $t>0$! But one expects $F_{N}^{2}(x, y)=F_{N}^{1}(x) F_{N}^{1}(y)+G_{N}^{2}(x, y)$ where G_{N}^{2} is the two-particles correlation function with $G_{N}^{2} \rightarrow 0$ as $N \rightarrow \infty$.

Then \rightarrow PDE version of the McKean-Vlasov equation on \mathbb{T}^{d}

$$
\partial_{t} f(x)=\frac{1}{2} \triangle f(x)-\operatorname{div}_{x}(b(x, f) f(x)) .
$$

Propagation of chaos I: qualitative convergence

$G_{N}^{2} \rightarrow 0$ as $N \rightarrow \infty$? Are $Y^{1, N}$ and $Y^{2, N}$ "independent" at all time? In what sense?

Propagation of chaos I: qualitative convergence

$G_{N}^{2} \rightarrow 0$ as $N \rightarrow \infty$? Are $Y^{1, N}$ and $Y^{2, N}$ "independent" at all time? In what sense?

In general, expect that on $[0, T], T>0$, and for any fixed $k \in\{1, \ldots, N\}$,

$$
\left(Y^{1, N}, \ldots, Y^{k, N}\right) \Longrightarrow\left(X^{1}, \ldots, X^{k}\right)
$$

where $\left(X^{i}\right)_{i}$ are i.i.d. copies of solutions to the MVSDE, weakly in $C\left([0, T],\left(\mathbb{T}^{d}\right)^{k}\right)$. This gives

* convergence towards the limit equation

摂 asymptotic independence.

Propagation of chaos I: qualitative convergence

$G_{N}^{2} \rightarrow 0$ as $N \rightarrow \infty$? Are $Y^{1, N}$ and $Y^{2, N}$ "independent" at all time? In what sense?

In general, expect that on $[0, T], T>0$, and for any fixed $k \in\{1, \ldots, N\}$,

$$
\left(Y^{1, N}, \ldots, Y^{k, N}\right) \Longrightarrow\left(X^{1}, \ldots, X^{k}\right)
$$

where $\left(X^{i}\right)_{i}$ are i.i.d. copies of solutions to the MVSDE, weakly in $C\left([0, T],\left(\mathbb{T}^{d}\right)^{k}\right)$. This gives

* convergence towards the limit equation
* asymptotic independence.
- For b Lipschitz (w.r.t. the topology of $\mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right)$), Sznitman's coupling, see Sznitman (1991), Lacker (2018)...
- Other approaches: tightness of $\left(\mathcal{L}\left(\mu_{t}^{N}\right) \in \mathcal{P}\left(\mathcal{P}\left(\mathbb{T}^{d}\right)\right)\right)_{0 \leq t \leq T}$. Then $\left(\mathcal{L}\left(\mu_{t}^{N}\right)\right)_{0 \leq t \leq T}$ converges weakly to $\delta_{\mathcal{L}\left(X_{t}\right)_{0 \leq t \leq T}}$.

Propagation of chaos II: strong errors

Two types of results, quantifying strong and weak errors. Second aspect to quantify: uniformity in time ? Strong errors: convergence in some Wasserstein norm, e.g.

$$
\sup _{t \geq 0} W_{1}\left(F_{N}^{k}(t, \cdot), m\left(t, \mu_{0}\right)^{\otimes k}\right)=O\left(\frac{1}{N^{\frac{1}{2}}}\right)
$$

Propagation of chaos II: strong errors

Two types of results, quantifying strong and weak errors. Second aspect to quantify: uniformity in time? Strong errors: convergence in some Wasserstein norm, e.g.

$$
\sup _{t \geq 0} W_{1}\left(F_{N}^{k}(t, \cdot), m\left(t, \mu_{0}\right)^{\otimes k}\right)=O\left(\frac{1}{N^{\frac{1}{2}}}\right)
$$

Recent uniform in times results:

- Malrieu 2001 (W convex);
- Durmus-Eberle-Guillin-Zimmer 2020 for small interaction;
- Guillin-Le Bris-Monmarché 2021 for more singular interactions (allowing to treat the Biot-Savart kernel).
Jabin-Wang (2018): non-uniform in time estimates for singular interaction, starting point of several papers.
Other approach to strong error: central limit theorem (Sznitman, Méléard...).

Propagation of chaos III: weak errors

Focus on the statistical behavior of μ_{t}^{N}. Goal: deriving rates of convergence (in t and N) for

$$
\mathbb{E}\left[\left|\Phi\left(\mu_{t}^{N}\right)-\Phi\left(m\left(t, \mu_{0}\right)\right)\right|\right],
$$

where $\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ is a test function. Typically Φ is * polynomial: Mischler-Mouhot-Wennberg 2015;

* linear: Bencheikh-Jourdain 2019 (more general b).

Rate $O\left(\frac{1}{N}\right)$ not uniform in time.

Propagation of chaos III: weak errors

Focus on the statistical behavior of μ_{t}^{N}. Goal: deriving rates of convergence (in t and N) for

$$
\mathbb{E}\left[\left|\Phi\left(\mu_{t}^{N}\right)-\Phi\left(m\left(t, \mu_{0}\right)\right)\right|\right],
$$

where $\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ is a test function. Typically Φ is

* polynomial: Mischler-Mouhot-Wennberg 2015;
* linear: Bencheikh-Jourdain 2019 (more general b).

Rate $O\left(\frac{1}{N}\right)$ not uniform in time.
For the torus case, recent results of Delarue-Tse (2021): under regularity assumptions on b and Φ, there exists $C>0$ such that for all $\mu_{0} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
\sup _{t \geq 0} \mathbb{E}\left[\left|\Phi\left(\mu_{t}^{N}\right)-\Phi\left(m\left(t, \mu_{0}\right)\right)\right|\right] \leq \frac{C}{N}
$$

Back to the marginals

Recall:

$$
\partial_{t} F_{N}^{1}(x)=\frac{1}{2} \triangle F_{N}^{1}(x)+\operatorname{div}_{x}\left(\int_{\mathbb{T}^{d}} \nabla W(y-x) F_{N}^{2}(x, y) \mathrm{d} y\right) .
$$

Back to the marginals

Recall:

$$
\partial_{t} F_{N}^{1}(x)=\frac{1}{2} \triangle F_{N}^{1}(x)+\operatorname{div}_{x}\left(\int_{\mathbb{T}^{d}} \nabla W(y-x) F_{N}^{2}(x, y) \mathrm{d} y\right) .
$$

Writing $F_{N}^{2}(x, y)=F_{N}^{1}(x) F_{N}^{1}(y)+G_{N}^{2}(x, y)$, the previous results show $G_{N}^{2}=O\left(\frac{1}{N}\right)$ in some weak sense \rightarrow McKean-Vlasov equation.

Beyond mean-fields (Bogolyubov corrections?)
What if we keep G_{N}^{2} ? The equation for F_{N}^{1} depending on F_{N}^{2} also writes

$$
\begin{aligned}
& \partial_{t} F_{N}^{1}(x)=\frac{1}{2} \Delta F_{N}^{1}(x)-\operatorname{div}_{x}\left(b\left(x, F_{N}^{1}\right) F_{N}^{1}(x)\right) \\
& \quad+\operatorname{div}_{x}\left(\frac{1}{N} \int_{\mathbb{T}^{d}} \nabla W(x-y)\left(N G_{N}^{2}\right)(x, y) \mathrm{d} y\right) .
\end{aligned}
$$

Beyond mean-fields (Bogolyubov corrections?)
What if we keep G_{N}^{2} ? The equation for F_{N}^{1} depending on F_{N}^{2} also writes

$$
\begin{aligned}
& \partial_{t} F_{N}^{1}(x)=\frac{1}{2} \Delta F_{N}^{1}(x)-\operatorname{div}_{x}\left(b\left(x, F_{N}^{1}\right) F_{N}^{1}(x)\right) \\
& \quad+\operatorname{div}_{x}\left(\frac{1}{N} \int_{\mathbb{T}^{d}} \nabla W(x-y)\left(N G_{N}^{2}\right)(x, y) \mathrm{d} y\right)
\end{aligned}
$$

Assume that $G_{N}^{3}=O\left(\frac{1}{N^{2}}\right)$, then the equation for F_{N}^{2} is

Beyond mean-fields (Bogolyubov corrections?)

What if we keep G_{N}^{2} ? The equation for F_{N}^{1} depending on F_{N}^{2} also writes

$$
\begin{aligned}
& \partial_{t} F_{N}^{1}(x)=\frac{1}{2} \Delta F_{N}^{1}(x)-\operatorname{div}_{x}\left(b\left(x, F_{N}^{1}\right) F_{N}^{1}(x)\right) \\
& \quad+\operatorname{div}_{x}\left(\frac{1}{N} \int_{\mathbb{T}^{d}} \nabla W(x-y)\left(N G_{N}^{2}\right)(x, y) \mathrm{d} y\right)
\end{aligned}
$$

Assume that $G_{N}^{3}=O\left(\frac{1}{N^{2}}\right)$, then the equation for F_{N}^{2} is

$$
\begin{aligned}
\partial_{t} F_{N}^{2}\left(x_{1}, x_{2}\right)= & \frac{1}{2} \triangle F_{N}^{2}\left(x_{1}, x_{2}\right)-\sum_{1 \leq i \neq j \leq 2} \operatorname{div}_{x_{i}}\left\{-\frac{1}{N} \nabla W\left(x_{i}-x_{j}\right) F_{N}^{1}\left(x_{i}\right) F_{N}^{1}\left(x_{j}\right)\right. \\
& +\frac{N-1}{N} b\left(x_{i}, F_{N}^{1}\right) F_{N}^{1}\left(x_{i}\right) F_{N}^{1}\left(x_{j}\right)+3 \frac{N-1}{N} b\left(x_{i}, F_{N}^{1}\right) F_{N}^{2}\left(x_{i}, x_{j}\right) \\
& -3 \frac{N-1}{N} \int_{\mathbb{T}^{d}} \nabla W\left(x-x_{i}\right) F_{N}^{2}\left(x_{i}, x\right) \mathrm{d} x F_{N}^{1}\left(x_{j}\right) \\
& \left.-3 \frac{N-1}{N} \int_{\mathbb{T}^{d}} \nabla W\left(x-x_{i}\right) F_{N}^{2}\left(x, x_{j}\right) \mathrm{d} x F_{N}^{1}\left(x_{1}\right)\right\}+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

Beyond mean-fields (Bogolyubov corrections?)

What if we keep G_{N}^{2} ? The equation for F_{N}^{1} depending on F_{N}^{2} also writes

$$
\begin{aligned}
& \partial_{t} F_{N}^{1}(x)=\frac{1}{2} \Delta F_{N}^{1}(x)-\operatorname{div}_{x}\left(b\left(x, F_{N}^{1}\right) F_{N}^{1}(x)\right) \\
& \quad+\operatorname{div}_{x}\left(\frac{1}{N} \int_{\mathbb{T}^{d}} \nabla W(x-y)\left(N G_{N}^{2}\right)(x, y) \mathrm{d} y\right)
\end{aligned}
$$

Assume that $G_{N}^{3}=O\left(\frac{1}{N^{2}}\right)$, then the equation for F_{N}^{2} is

$$
\begin{aligned}
\partial_{t} F_{N}^{2}\left(x_{1}, x_{2}\right)= & \frac{1}{2} \Delta F_{N}^{2}\left(x_{1}, x_{2}\right)-\sum_{1 \leq i \neq j \leq 2} \operatorname{div}_{x_{i}}\left\{-\frac{1}{N} \nabla W\left(x_{i}-x_{j}\right) F_{N}^{1}\left(x_{i}\right) F_{N}^{1}\left(x_{j}\right)\right. \\
& +\frac{N-1}{N} b\left(x_{i}, F_{N}^{1}\right) F_{N}^{1}\left(x_{i}\right) F_{N}^{1}\left(x_{j}\right)+3 \frac{N-1}{N} b\left(x_{i}, F_{N}^{1}\right) F_{N}^{2}\left(x_{i}, x_{j}\right) \\
& -3 \frac{N-1}{N} \int_{\mathbb{T}^{d}} \nabla W\left(x-x_{i}\right) F_{N}^{2}\left(x_{i}, x\right) \mathrm{d} x F_{N}^{1}\left(x_{j}\right) \\
& \left.-3 \frac{N-1}{N} \int_{\mathbb{T}^{d}} \nabla W\left(x-x_{i}\right) F_{N}^{2}\left(x, x_{j}\right) \mathrm{d} x F_{N}^{1}\left(x_{1}\right)\right\}+O\left(\frac{1}{N^{2}}\right) .
\end{aligned}
$$

Since $G_{N}^{2}=F_{N}^{2}-\left(F_{N}^{1}\right)^{\otimes 2} \rightarrow$ closed form for the evolution of F_{N}^{1} and G_{N}^{2}. Initial data

1. $G_{N \mid t=0}^{2}=0$;
2. $F_{N \mid t=0}^{1}=\mu_{0}$.

Controlling the correlations

Expect the contribution of G_{N}^{2} to be of order $O\left(\frac{1}{N}\right)$. With this contribution: correction to this mean-field limit, provided that $G_{N}^{3}=O\left(\frac{1}{N^{2}}\right)$. And so on...

Controlling the correlations

Expect the contribution of G_{N}^{2} to be of order $O\left(\frac{1}{N}\right)$. With this contribution: correction to this mean-field limit, provided that $G_{N}^{3}=O\left(\frac{1}{N^{2}}\right)$. And so on...

Our work: in some weak sense and uniformly in time

$$
G_{N}^{m+1}=O\left(\frac{1}{N^{m}}\right)
$$

for all $m \geq 1$.

A brief reminder on cumulants

(Joint) cumulants of $\left(Z_{1}, \ldots, Z_{n}\right)$ measure the interactions between the variables: for

$$
\begin{gathered}
K\left(t_{1}, \ldots, t_{n}\right)=\log \mathbb{E}\left[e^{\sum_{j=1}^{n} t_{j} Z_{j}}\right] \\
\kappa^{n}\left[Z_{1}, \ldots, Z_{n}\right]=\left.\frac{d^{n}}{d t_{1} \ldots d t_{n}} K\left(t_{1}, \ldots, t_{n}\right)\right|_{t_{1}=\cdots=t_{n}=0 .}
\end{gathered}
$$

We write

$$
\kappa^{m}(X)=\kappa^{m}(X, \ldots, X)
$$

A brief reminder on cumulants

(Joint) cumulants of $\left(Z_{1}, \ldots, Z_{n}\right)$ measure the interactions between the variables: for

$$
\begin{gathered}
K\left(t_{1}, \ldots, t_{n}\right)=\log \mathbb{E}\left[e^{\sum_{j=1}^{n} t_{j} Z_{j}}\right] \\
\kappa^{n}\left[Z_{1}, \ldots, Z_{n}\right]=\left.\frac{d^{n}}{d t_{1} \ldots d t_{n}} K\left(t_{1}, \ldots, t_{n}\right)\right|_{t_{1}=\cdots=t_{n}=0}
\end{gathered}
$$

We write

$$
\kappa^{m}(X)=\kappa^{m}(X, \ldots, X)
$$

Recall in particular that for all $X \in L^{4}(\Omega)$,

$$
\kappa^{2}(X)=\operatorname{Var}(X), \quad \kappa^{3}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{3}\right]
$$

But of course it is not always that easy

$$
\kappa^{4}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{4}\right]-3 \operatorname{Var}(X)^{2}
$$

Main result

Our main result is the following:
Theorem (B.-Duerinckx 2022 ${ }^{+}$)
Assume that b is given by a smooth, H-stable potential W, and that
$\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ is smooth. Then, for all $m \geq 1$, there exists a constant $C>0$ such that, for any $\mu_{0} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
\sup _{t \geq 0} \kappa^{m+1}\left[\Phi\left(\mu_{t}^{N}\right)\right] \leq \frac{C}{N^{m}}
$$

Φ smooth in the sense of linear derivatives w.r.t. the measure.

* Explicit dependency of C in the derivatives of Φ.

Main result

Our main result is the following:
Theorem (B.-Duerinckx 2022+ ${ }^{+}$
Assume that b is given by a smooth, H-stable potential W, and that
$\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ is smooth. Then, for all $m \geq 1$, there exists a constant $C>0$ such that, for any $\mu_{0} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
\sup _{t \geq 0} \kappa^{m+1}\left[\Phi\left(\mu_{t}^{N}\right)\right] \leq \frac{C}{N^{m}}
$$

\& smooth in the sense of linear derivatives w.r.t. the measure.

* Explicit dependency of C in the derivatives of Φ.

Possible to relate $\kappa^{m+1}\left[\Phi\left(\mu_{t}^{N}\right)\right]$ to the norm of G_{N}^{m+1} when $\Phi(\mu)=\int_{\mathbb{T}^{d}} \varphi(x) \mu(\mathrm{d} x)$ with φ smooth.

The sources of randomness

Recall $\mu_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_{t}^{i, N}}$ for all $t \geq 0$. Let $\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$. Weak formulation of the result for G_{N}^{2} :

$$
\operatorname{Var}\left[\Phi\left(\mu_{t}^{N}\right)\right]=O\left(\frac{1}{N}\right)
$$

uniformly in time.

The sources of randomness

Recall $\mu_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_{t}^{i, N}}$ for all $t \geq 0$. Let $\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$. Weak formulation of the result for G_{N}^{2} :

$$
\operatorname{Var}\left[\Phi\left(\mu_{t}^{N}\right)\right]=O\left(\frac{1}{N}\right)
$$

uniformly in time.
Two sources of randomness, treated separately:
$>$ Brownian motions;
$>$ initial distributions.
\mathbb{E} for the global randomness, \mathbb{E}_{\circ} for the one related to the initial data, \mathbb{E}_{B} for the one related to the Brownian motions. And so on, we write Var, $\operatorname{Var}_{\circ}, \operatorname{Var}_{B}, \kappa, \kappa_{\circ}$, $\kappa_{B} \cdots$

The sources of randomness

Recall $\mu_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_{t}^{i, N}}$ for all $t \geq 0$. Let $\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$. Weak formulation of the result for G_{N}^{2} :

$$
\operatorname{Var}\left[\Phi\left(\mu_{t}^{N}\right)\right]=O\left(\frac{1}{N}\right)
$$

uniformly in time.
Two sources of randomness, treated separately:
$>$ Brownian motions;
> initial distributions.
\mathbb{E} for the global randomness, \mathbb{E}_{\circ} for the one related to the initial data, \mathbb{E}_{B} for the one related to the Brownian motions. And so on, we write Var, $\operatorname{Var}_{\circ}, \operatorname{Var}_{B}, \kappa, \kappa_{\circ}$, $\kappa_{B} \ldots$

Splitting between those two sources:

$$
\operatorname{Var}\left[\Phi\left(\mu_{t}^{N}\right)\right]=\operatorname{Var}_{\circ}\left[\mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]\right]+\mathbb{E}_{\circ}\left[\operatorname{Var}_{B}\left(\Phi\left(\mu_{t}^{N}\right)\right)\right]
$$

We will prove

$$
\begin{aligned}
& \star \mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]=\Phi\left(m\left(t, \mu_{0}^{N}\right)\right)+O\left(\frac{1}{N}\right) \\
& \operatorname{Var}_{B}\left(\Phi\left(\mu_{t}^{N}\right)\right)=O\left(\frac{1}{N}\right)
\end{aligned}
$$

Our tools

Specific tools for each type of randomness.

Our tools

Specific tools for each type of randomness.
> Expansions in the Wasserstein space, strongly inspired by recent works of Delarue-Tse (2021), Chassagneux-Szpruch-Tse (2019)...

Our tools

Specific tools for each type of randomness.
$>$ Expansions in the Wasserstein space, strongly inspired by recent works of Delarue-Tse (2021), Chassagneux-Szpruch-Tse (2019)...
> Glauber calculus to handle cumulants with respect to the initial distribution. Used by Duerinckx (2021) for the Vlasov system.

Our tools

Specific tools for each type of randomness.
$>$ Expansions in the Wasserstein space, strongly inspired by recent works of Delarue-Tse (2021), Chassagneux-Szpruch-Tse (2019)...
> Glauber calculus to handle cumulants with respect to the initial distribution. Used by Duerinckx (2021) for the Vlasov system.

In both cases, ergodic estimates to obtain the uniform control in time.

Linear functional derivatives

Let $F: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$. We say that F is continuously differentiable if there exists a continuous function $\frac{\delta F}{\delta m}: \mathcal{P}\left(\mathbb{T}^{d}\right) \times \mathbb{T}^{d} \rightarrow \mathbb{R}$ such that, for any $\mu, \mu^{\prime} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
F(\mu)-F\left(\mu^{\prime}\right)=\int_{0}^{1} \int_{\mathbb{T}^{d}} \frac{\delta F}{\delta m}\left(s \mu+(1-s) \mu^{\prime}, y\right)\left(\mu-\mu^{\prime}\right)(\mathrm{d} y) \mathrm{d} s
$$

Linear functional derivatives

Let $F: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$. We say that F is continuously differentiable if there exists a continuous function $\frac{\delta F}{\delta m}: \mathcal{P}\left(\mathbb{T}^{d}\right) \times \mathbb{T}^{d} \rightarrow \mathbb{R}$ such that, for any $\mu, \mu^{\prime} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
F(\mu)-F\left(\mu^{\prime}\right)=\int_{0}^{1} \int_{\mathbb{T}^{d}} \frac{\delta F}{\delta m}\left(s \mu+(1-s) \mu^{\prime}, y\right)\left(\mu-\mu^{\prime}\right)(\mathrm{d} y) \mathrm{d} s
$$

The definition holds up to some additive constant, so we require

$$
\int_{\mathbb{T}^{d}} \frac{\delta F}{\delta m}(\mu, y) \mu(\mathrm{d} y)=0
$$

Linear functional derivatives

Let $F: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$. We say that F is continuously differentiable if there exists a continuous function $\frac{\delta F}{\delta m}: \mathcal{P}\left(\mathbb{T}^{d}\right) \times \mathbb{T}^{d} \rightarrow \mathbb{R}$ such that, for any $\mu, \mu^{\prime} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
F(\mu)-F\left(\mu^{\prime}\right)=\int_{0}^{1} \int_{\mathbb{T}^{d}} \frac{\delta F}{\delta m}\left(s \mu+(1-s) \mu^{\prime}, y\right)\left(\mu-\mu^{\prime}\right)(\mathrm{d} y) \mathrm{d} s
$$

The definition holds up to some additive constant, so we require

$$
\int_{\mathbb{T}^{d}} \frac{\delta F}{\delta m}(\mu, y) \mu(\mathrm{d} y)=0
$$

Wasserstein derivative: for $y \in \mathbb{T}^{d}, \mu \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
\partial_{\mu} F(\mu)(y)=\partial_{y} \frac{\delta F}{\delta m}(\mu, y) .
$$

Glauber calculus

Let $\gamma:\left(\mathbb{T}^{d}\right)^{N} \rightarrow \mathbb{R}$. Glauber derivative with respect to $Y_{0}^{1, N}$:

$$
D_{\circ}^{1}\left[\gamma\left(Y_{0}^{1, N}, \ldots, Y_{0}^{N, N}\right)\right]=\gamma\left(Y_{0}^{1, N}, \ldots, Y_{0}^{N, N}\right)-\int_{\mathbb{T}^{d}} \gamma\left(z, \ldots, Y_{0}^{N, N}\right) \mu_{0}(\mathrm{~d} z)
$$

\Longrightarrow measure the sensitivity of γ with respect to $Y_{0}^{1, N}$.

Glauber calculus

Let $\gamma:\left(\mathbb{T}^{d}\right)^{N} \rightarrow \mathbb{R}$. Glauber derivative with respect to $Y_{0}^{1, N}$:

$$
D_{\circ}^{1}\left[\gamma\left(Y_{0}^{1, N}, \ldots, Y_{0}^{N, N}\right)\right]=\gamma\left(Y_{0}^{1, N}, \ldots, Y_{0}^{N, N}\right)-\int_{\mathbb{T}^{d}} \gamma\left(z, \ldots, Y_{0}^{N, N}\right) \mu_{0}(\mathrm{~d} z)
$$

\Longrightarrow measure the sensitivity of γ with respect to $Y_{0}^{1, N}$.
For any $\psi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ admitting linear derivative, any $j \in[N]$,

$$
\begin{aligned}
D_{\circ}^{j}\left[\psi\left(\mu_{0}^{N}\right)\right]=\frac{1}{N} & \int_{0}^{1} \frac{\delta \psi}{\delta m}\left(\frac{1}{N} \sum_{i \neq j} \delta_{Y_{0}^{i, N}}+\frac{s}{N} \delta_{Y_{0}^{j, N}}+\frac{1-s}{N} \delta_{z}, Y_{0}^{j, N}\right) \mu_{0}(\mathrm{~d} z) \mathrm{d} s \\
& -\frac{1}{N} \int_{0}^{1} \frac{\delta \psi}{\delta m}\left(\frac{1}{N} \sum_{i \neq j} \delta_{Y_{0}^{i, N}}+\frac{s}{N} \delta_{Y_{0}^{j, N}}+\frac{1-s}{N} \delta_{z}, z\right) \mu_{0}(\mathrm{~d} z) \mathrm{d} s \\
\Longrightarrow & D_{0}^{j}\left[\psi\left(\mu_{0}^{N}\right)\right]=
\end{aligned}
$$

Glauber calculus

Let $\gamma:\left(\mathbb{T}^{d}\right)^{N} \rightarrow \mathbb{R}$. Glauber derivative with respect to $Y_{0}^{1, N}$:

$$
D_{\circ}^{1}\left[\gamma\left(Y_{0}^{1, N}, \ldots, Y_{0}^{N, N}\right)\right]=\gamma\left(Y_{0}^{1, N}, \ldots, Y_{0}^{N, N}\right)-\int_{\mathbb{T}^{d}} \gamma\left(z, \ldots, Y_{0}^{N, N}\right) \mu_{0}(\mathrm{~d} z)
$$

\Longrightarrow measure the sensitivity of γ with respect to $Y_{0}^{1, N}$.
For any $\psi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ admitting linear derivative, any $j \in[N]$,

$$
\begin{aligned}
D_{\circ}^{j}\left[\psi\left(\mu_{0}^{N}\right)\right]=\frac{1}{N} & \int_{0}^{1} \frac{\delta \psi}{\delta m}\left(\frac{1}{N} \sum_{i \neq j} \delta_{Y_{0}^{i, N}}+\frac{s}{N} \delta_{Y_{0}^{j, N}}+\frac{1-s}{N} \delta_{z}, Y_{0}^{j, N}\right) \mu_{0}(\mathrm{~d} z) \mathrm{d} s \\
& -\frac{1}{N} \int_{0}^{1} \frac{\delta \psi}{\delta m}\left(\frac{1}{N} \sum_{i \neq j} \delta_{Y_{0}^{i, N}}+\frac{s}{N} \delta_{Y_{0}^{j, N}}+\frac{1-s}{N} \delta_{z}, z\right) \mu_{0}(\mathrm{~d} z) \mathrm{d} s
\end{aligned}
$$

$\Longrightarrow D_{0}^{j}\left[\psi\left(\mu_{0}^{N}\right)\right]=O\left(\frac{1}{N}\right)$ provided good control of $\frac{\delta \psi}{\delta m}$.
Efron-Stein's inequality:

$$
\operatorname{Var}_{\circ}[Y] \leq \mathbb{E}^{\circ}\left[\sum_{j=1}^{N}\left|D_{\circ}^{j}[Y]\right|^{2}\right]
$$

Similar Poincaré inequality for higher-order cumulants.

The sources of randomness

Recall $\mu_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_{t}^{i, N}}$ for all $t \geq 0$. Let $\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$. Weak formulation of the result for G_{N}^{2} :

$$
\operatorname{Var}\left[\Phi\left(\mu_{t}^{N}\right)\right]=O\left(\frac{1}{N}\right)
$$

uniformly in time.
Two sources of randomness, treated separately:
$>$ Brownian motions;
> initial distributions.
\mathbb{E} for the global randomness, \mathbb{E}_{\circ} for the one related to the initial data, \mathbb{E}_{B} for the one related to the Brownian motions. And so on, we write Var, $\operatorname{Var}_{\circ}, \operatorname{Var}_{B}, \kappa, \kappa_{\circ}$, $\kappa_{B} \ldots$

Splitting between those two sources:

$$
\operatorname{Var}\left[\Phi\left(\mu_{t}^{N}\right)\right]=\operatorname{Var}_{\circ}\left[\mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]\right]+\mathbb{E}_{\circ}\left[\operatorname{Var}_{B}\left(\Phi\left(\mu_{t}^{N}\right)\right)\right]
$$

We will prove

$$
\begin{aligned}
& \star \mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]=\Phi\left(m\left(t, \mu_{0}^{N}\right)\right)+O\left(\frac{1}{N}\right) \\
& \operatorname{Var}_{B}\left(\Phi\left(\mu_{t}^{N}\right)\right)=O\left(\frac{1}{N}\right)
\end{aligned}
$$

The master equation

For any $\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$, write $\mathcal{U}_{\Phi}(t, \mu)=\Phi(m(t, \mu))$ for $t \geq 0, \mu \in \mathcal{P}\left(\mathbb{T}^{d}\right)$. Then, from Buckdahn-Li-Peng-Rainer (2017), \mathcal{U}_{Φ} satisfies the master equation

$$
\left\{\begin{aligned}
\partial_{t} \mathcal{U}_{\Phi}(t, \mu)= & \int_{\mathbb{T}^{d}}\left[\sum_{i=1}^{d} \partial_{x_{i}} \frac{\delta \mathcal{U}_{\Phi}}{\delta m}(t, \mu, x) b_{i}(x, \mu)\right. \\
& \left.\quad+\frac{1}{2} \sum_{i, j=1}^{d} \partial_{x_{i} x_{j}}^{2} \frac{\delta \mathcal{U}_{\Phi}}{\delta m}(t, \mu, x)\right] \mu(\mathrm{d} x) \quad t \geq 0 \\
\mathcal{U}_{\Phi}(0, \mu)= & \Phi(\mu)
\end{aligned}\right.
$$

The master equation

For any $\Phi: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$, write $\mathcal{U}_{\Phi}(t, \mu)=\Phi(m(t, \mu))$ for $t \geq 0, \mu \in \mathcal{P}\left(\mathbb{T}^{d}\right)$. Then, from Buckdahn-Li-Peng-Rainer (2017), \mathcal{U}_{Φ} satisfies the master equation

$$
\left\{\begin{aligned}
\partial_{t} \mathcal{U}_{\Phi}(t, \mu)= & \int_{\mathbb{T}^{d}}\left[\sum_{i=1}^{d} \partial_{x_{i}} \frac{\delta \mathcal{U}_{\Phi}}{\delta m}(t, \mu, x) b_{i}(x, \mu)\right. \\
& \left.\quad+\frac{1}{2} \sum_{i, j=1}^{d} \partial_{x_{i} x_{j}}^{2} \frac{\delta \mathcal{U}_{\Phi}}{\delta m}(t, \mu, x)\right] \mu(\mathrm{d} x) \quad t \geq 0 \\
\mathcal{U}_{\Phi}(0, \mu)= & \Phi(\mu)
\end{aligned}\right.
$$

\rightarrow expand $m(t, \mu)$ along the dynamics. From Chassagneux-Szpruch-Tse (2019), we have

$$
\mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]=\mathcal{U}_{\Phi}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \int_{\mathbb{T}^{d}} \mathbb{E}_{B}\left[\operatorname{Tr}\left[\partial_{\mu}^{2} \mathcal{U}_{\Phi}\left(t-s, \mu_{s}^{N}, v, v\right)\right] \mu_{s}^{N}(\mathrm{~d} v) \mathrm{d} s\right.
$$

where $\partial_{\mu} \mathcal{U}_{\Phi}(t-s, \mu, y)=\partial_{y} \frac{\delta \mathcal{U}}{\delta m}(t-s, \mu, y)$.

Pushing the expansion further

Set, for $0 \leq s \leq t, \mu \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
\Phi^{(1)}((t, s), \mu)=\int_{\mathbb{T}^{d}} \operatorname{Tr}\left[\partial_{\mu}^{2} \mathcal{U}_{\Phi}(t-s, \mu, y, y)\right] \mu(\mathrm{d} y)
$$

and then set, for $0 \leq u \leq s \leq t$,

$$
\mathcal{U}_{\Phi}^{(1)}((t, s, u), \mu)=\Phi^{(1)}((t, s), m(s-u, \mu)) .
$$

\rightarrow use $\mathcal{U}_{\Phi}^{(1)}$ to push the expansion.

Pushing the expansion further

Set, for $0 \leq s \leq t, \mu \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
\Phi^{(1)}((t, s), \mu)=\int_{\mathbb{T}^{d}} \operatorname{Tr}\left[\partial_{\mu}^{2} \mathcal{U}_{\Phi}(t-s, \mu, y, y)\right] \mu(\mathrm{d} y)
$$

and then set, for $0 \leq u \leq s \leq t$,

$$
\mathcal{U}_{\Phi}^{(1)}((t, s, u), \mu)=\Phi^{(1)}((t, s), m(s-u, \mu)) .
$$

\rightarrow use $\mathcal{U}_{\Phi}^{(1)}$ to push the expansion.

$$
\begin{aligned}
\mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]= & \mathcal{U}_{\Phi}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \mathcal{U}_{\Phi}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \mathrm{d} s \\
& +\frac{1}{4 N^{2}} \int_{0}^{t} \int_{0}^{s} \int_{\mathbb{T}^{d}} \operatorname{Tr}\left[\partial_{\mu}^{2} \mathcal{U}_{\Phi}^{(1)}\left((t, s, u), \mu_{u}^{N}, y, y\right)\right] \mu_{u}^{N}(\mathrm{~d} y) \mathrm{d} u \mathrm{~d} s
\end{aligned}
$$

Pushing the expansion further

Set, for $0 \leq s \leq t, \mu \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
\Phi^{(1)}((t, s), \mu)=\int_{\mathbb{T}^{d}} \operatorname{Tr}\left[\partial_{\mu}^{2} \mathcal{U}_{\Phi}(t-s, \mu, y, y)\right] \mu(\mathrm{d} y)
$$

and then set, for $0 \leq u \leq s \leq t$,

$$
\mathcal{U}_{\Phi}^{(1)}((t, s, u), \mu)=\Phi^{(1)}((t, s), m(s-u, \mu)) .
$$

\rightarrow use $\mathcal{U}_{\Phi}^{(1)}$ to push the expansion.

$$
\begin{aligned}
\mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]= & \mathcal{U}_{\Phi}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \mathcal{U}_{\Phi}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \mathrm{d} s \\
& +\frac{1}{4 N^{2}} \int_{0}^{t} \int_{0}^{s} \int_{\mathbb{T}^{d}} \operatorname{Tr}\left[\partial_{\mu}^{2} \mathcal{U}_{\Phi}^{(1)}\left((t, s, u), \mu_{u}^{N}, y, y\right)\right] \mu_{u}^{N}(\mathrm{~d} y) \mathrm{d} u \mathrm{~d} s
\end{aligned}
$$

Explicit formulas relating $\partial_{\mu}^{2} \mathcal{U}_{\Phi}^{(1)}$ with Wasserstein derivatives of Φ evaluated at solutions of linearized parabolic equations. In particular, using ergodic estimates for those solutions:

$$
\sup _{\mu \in \mathcal{P}\left(\mathbb{T}^{d}\right)} \int_{\mathbb{T}^{d}} \int_{0}^{t} \int_{0}^{s} \operatorname{Tr}\left[\partial_{\mu}^{2} \mathcal{U}_{\Phi}^{(1)}((t, s, u), \mu, y, y)\right] \mu(\mathrm{d} y) \mathrm{d} u \mathrm{~d} s=O(1)
$$

Treating the Brownian cumulants

$$
\begin{aligned}
\operatorname{Var}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]= & \mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)^{2}\right]-\mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]^{2} \\
= & \mathcal{U}_{\Phi^{2}}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \mathcal{U}_{\Phi^{2}}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \mathrm{d} s \\
& -\left(\mathcal{U}_{\Phi}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \mathcal{U}_{\Phi}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \mathrm{d} s\right)^{2}+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

and $\mathcal{U}_{\Phi^{2}}\left(t, \mu_{0}^{N}\right)=\Phi^{2}\left(m\left(t, \mu_{0}^{N}\right)\right)=\mathcal{U}_{\Phi}\left(m\left(t, \mu_{0}^{N}\right)\right)^{2}$ so $\operatorname{Var}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]=O\left(\frac{1}{N}\right)$.

Treating the Brownian cumulants

$$
\begin{aligned}
\operatorname{Var}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]= & \mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)^{2}\right]-\mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]^{2} \\
= & \mathcal{U}_{\Phi^{2}}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \mathcal{U}_{\Phi^{2}}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \mathrm{d} s \\
& -\left(\mathcal{U}_{\Phi}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \mathcal{U}_{\Phi}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \mathrm{d} s\right)^{2}+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

and $\mathcal{U}_{\Phi^{2}}\left(t, \mu_{0}^{N}\right)=\Phi^{2}\left(m\left(t, \mu_{0}^{N}\right)\right)=\mathcal{U}_{\Phi}\left(m\left(t, \mu_{0}^{N}\right)\right)^{2}$ so $\operatorname{Var}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]=O\left(\frac{1}{N}\right)$.
We can do much more! Identifying precisely the $O\left(\frac{1}{N}\right)$ term: since

$$
\begin{aligned}
\partial_{\mu}^{2} f^{2}(\nu)(x, x) & =2 f(\nu)\left(\partial_{\mu}^{2} f(\nu)(x, x)\right)+2\left(\partial_{\mu} f(\nu)(x)\right)^{2} \\
\mathcal{U}_{\Phi^{2}}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right)= & 2 \mathcal{U}_{\Phi}\left(t, \mu_{0}^{N}\right) \mathcal{U}_{\Phi}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \\
& +\int_{\mathbb{T}^{d}}\left|\partial_{\mu} \mathcal{U}_{\Phi}\left(t-s, m\left(s, \mu_{0}^{N}\right)\right)(y)\right|^{2} m\left(s, \mu_{0}^{N}\right)(\mathrm{d} y) .
\end{aligned}
$$

Treating the Brownian cumulants

$$
\begin{aligned}
\operatorname{Var}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]= & \mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)^{2}\right]-\mathbb{E}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]^{2} \\
= & \mathcal{U}_{\Phi^{2}}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \mathcal{U}_{\Phi^{2}}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \mathrm{d} s \\
& -\left(\mathcal{U}_{\Phi}\left(t, \mu_{0}^{N}\right)+\frac{1}{2 N} \int_{0}^{t} \mathcal{U}_{\Phi}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \mathrm{d} s\right)^{2}+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

and $\mathcal{U}_{\Phi^{2}}\left(t, \mu_{0}^{N}\right)=\Phi^{2}\left(m\left(t, \mu_{0}^{N}\right)\right)=\mathcal{U}_{\Phi}\left(m\left(t, \mu_{0}^{N}\right)\right)^{2}$ so $\operatorname{Var}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]=O\left(\frac{1}{N}\right)$.
We can do much more! Identifying precisely the $O\left(\frac{1}{N}\right)$ term: since

$$
\begin{aligned}
\partial_{\mu}^{2} f^{2}(\nu)(x, x) & =2 f(\nu)\left(\partial_{\mu}^{2} f(\nu)(x, x)\right)+2\left(\partial_{\mu} f(\nu)(x)\right)^{2} \\
\mathcal{U}_{\Phi^{2}}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right)= & 2 \mathcal{U}_{\Phi}\left(t, \mu_{0}^{N}\right) \mathcal{U}_{\Phi}^{(1)}\left((t, s, 0), \mu_{0}^{N}\right) \\
& +\int_{\mathbb{T}^{d}}\left|\partial_{\mu} \mathcal{U}_{\Phi}\left(t-s, m\left(s, \mu_{0}^{N}\right)\right)(y)\right|^{2} m\left(s, \mu_{0}^{N}\right)(\mathrm{d} y) .
\end{aligned}
$$

Hence,
$\operatorname{Var}_{B}\left[\Phi\left(\mu_{t}^{N}\right)\right]=\frac{1}{N} \int_{0}^{t} \int_{\mathbb{T}^{d}}\left|\partial_{\mu} \mathcal{U}_{\Phi}\left(t-s, m\left(s, \mu_{0}^{N}\right), y\right)\right|^{2} m\left(s, \mu_{0}^{N}\right)(\mathrm{d} y) \mathrm{d} s+O\left(\frac{1}{N^{2}}\right)$.
Can apply Glauber calculus to this leading term!

Additional results

$>$ Precise regularity in Φ for the constant. Precise regularity in b ?

Additional results

$>$ Precise regularity in Φ for the constant. Precise regularity in b ?
$>$ Whole space with a (nice) confining potential.

Additional results

> Precise regularity in Φ for the constant. Precise regularity in b ?
$>$ Whole space with a (nice) confining potential.
$>$ Second-order system (in the whole space). Only difference: ergodic estimates for uniformity in time.

Additional results

> Precise regularity in Φ for the constant. Precise regularity in b ?
$>$ Whole space with a (nice) confining potential.
$>$ Second-order system (in the whole space). Only difference: ergodic estimates for uniformity in time.
$>$ Other application: via Stein's method and the Brownian expansion \rightarrow CLT.

Additional results

$>$ Precise regularity in Φ for the constant. Precise regularity in b ?
$>$ Whole space with a (nice) confining potential.
$>$ Second-order system (in the whole space). Only difference: ergodic estimates for uniformity in time.
$>$ Other application: via Stein's method and the Brownian expansion \rightarrow CLT.

Thank you for your attention!

