
Scaling ResNets in the large-depth regime
ROUEN, AUGUST 2022

Gérard Biau

Team

Adeline Fermanian
MINES PARIS - PSL

Pierre Marion
SORBONNE UNIVERSITY

Jean-Philippe Vert
GOOGLE RESEARCH

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

How most people see the supervised learning problem

https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730

https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730

How machine learners see the supervised learning problem

https://medium.datadriveninvestor.com/depth-estimation-with-deep-neural-networks-part-2-81ee374888eb

https://medium.datadriveninvestor.com/depth-estimation-with-deep-neural-networks-part-2-81ee374888eb

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).

� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.

� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2

Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

h0 = Ax, hk+1 = hk + f (hk, θk+1), Fπ(x) = BhL.

Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

h0 = Ax, hk+1 = hk + f (hk, θk+1), Fπ(x) = BhL.

Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

h0 = Ax, hk+1 = hk + f (hk, θk+1), Fπ(x) = BhL.

� Different forms for f : Rd × Rp → Rd = different architectures.

Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

h0 = Ax, hk+1 = hk + f (hk, θk+1), Fπ(x) = BhL.

� Different forms for f : Rd × Rp → Rd = different architectures.

Original Parametric Simple General ResNet

f (hk, θk+1) = Vk+1 ReLU(Wk+1hk + bk+1)

. ReLU(x) = max(x, 0) = activation function

. θk = (Wk, bk) = weight matrice + bias

. π = (A,B, (Vk)16k6L, (θk)16k6L)
He et al. (2016)

Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

h0 = Ax, hk+1 = hk + f (hk, θk+1), Fπ(x) = BhL.

� Different forms for f : Rd × Rp → Rd = different architectures.

Original Parametric Simple General ResNet

f (hk, θk+1) = Vk+1σ(Wk+1hk + bk+1)

. σ = activation function

. θk = (Wk, bk) = weight matrice + bias

. π = (A,B, (Vk)16k6L, (θk)16k6L)
He et al. (2016)

Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

h0 = Ax, hk+1 = hk + f (hk, θk+1), Fπ(x) = BhL.

� Different forms for f : Rd × Rp → Rd = different architectures.

Original Parametric Simple General ResNet

f (hk, θk+1) = Vk+1σ(hk)

. σ = activation function

. θk = ∅

. π = (A,B, (Vk)16k6L)
He et al. (2016)

Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

h0 = Ax, hk+1 = hk + f (hk, θk+1), Fπ(x) = BhL.

� Different forms for f : Rd × Rp → Rd = different architectures.

Original Parametric Simple General ResNet

f (hk, θk+1) = Vk+1g(hk, θk+1)

. g : Rd × Rp → Rd

. θk = parameters

. π = (A,B, (Vk)16k6L, (θk)16k6L)
He et al. (2016)

The revolution of ResNets

Examples from the ImageNet dataset

https://blog.roboflow.com/introduction-to-imagenet

https://blog.roboflow.com/introduction-to-imagenet

The revolution of ResNets

ImageNet performance over time

https://semiengineering.com/
new-vision-technologies-for-real-world-applications

https://semiengineering.com/new-vision-technologies-for-real-world-applications
https://semiengineering.com/new-vision-technologies-for-real-world-applications

The revolution of ResNets

ImageNet performance over time

https://semiengineering.com/
new-vision-technologies-for-real-world-applications

https://semiengineering.com/new-vision-technologies-for-real-world-applications
https://semiengineering.com/new-vision-technologies-for-real-world-applications

Deep learning→ neural ODE← ODE

� Traditional neural networks

hk+1 = f (hk, θk+1)

Deep learning→ neural ODE← ODE

� Traditional neural networks

hk+1 = f (hk, θk+1)

� Residual neural networks (He et al., 2016)

hk+1 = hk + f (hk, θk+1)

Deep learning→ neural ODE← ODE

� Traditional neural networks

hk+1 = f (hk, θk+1)

� Residual neural networks (He et al., 2016)

hk+1 = hk +
1

L
f (hk, θk+1)

Deep learning→ neural ODE← ODE

� Traditional neural networks

hk+1 = f (hk, θk+1)

� Residual neural networks (He et al., 2016)

hk+1 = hk +
1

L
f (hk, θk+1)

� Neural ODE (Chen et al., 2018)

dHt = f (Ht,Θt)dt

Deep learning→ neural ODE← ODE

� Traditional neural networks

hk+1 = f (hk, θk+1)

� Residual neural networks (He et al., 2016)

hk+1 = hk +
1

L
f (hk, θk+1)

� Neural ODE (Chen et al., 2018)

dHt = f (Ht,Θt)dt

New network architectures: Runge-Kutta networks

Benning et al. (2019)

New network architectures: antisymmetric networks

Chang et al. (2019)

In summary

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L f (hk, θk+1) dHt = f (Ht,Θt)dt

Fπ(x) = BhT FΠ(x) = BH1

f (h, θ) = Vσ(W h + b)

4! ResNet 6= RNN

Framing RNN as a kernel method:
A neural ODE approach

Adeline Fermanian1⇤ Pierre Marion1⇤ Jean-Philippe Vert2 Gérard Biau1

1 Sorbonne Université, CNRS,
Laboratoire de Probabilités, Statistique et Modélisation, LPSM,

F-75005 Paris, France
{adeline.fermanian, pierre.marion, gerard.biau}@sorbonne-universite.fr

2 Google Research, Brain team,
Paris, France

jpvert@google.com

Abstract

Building on the interpretation of a recurrent neural network (RNN) as a continuous-
time neural differential equation, we show, under appropriate conditions, that the
solution of a RNN can be viewed as a linear function of a specific feature set of
the input sequence, known as the signature. This connection allows us to frame
a RNN as a kernel method in a suitable reproducing kernel Hilbert space. As a
consequence, we obtain theoretical guarantees on generalization and stability for a
large class of recurrent networks. Our results are illustrated on simulated datasets.

1 Introduction

Recurrent neural networks (RNN) are among the most successful methods for modeling sequential
data. They have achieved state-of-the-art results in difficult problems such as natural language
processing (e.g., Mikolov et al., 2010; Collobert et al., 2011) or speech recognition (e.g., Hinton
et al., 2012; Graves et al., 2013). This class of neural networks has a natural interpretation in terms
of (discretization of) ordinary differential equations (ODE), which casts them in the field of neural
ODE (Chen et al., 2018). This observation has led to the development of continuous-depth models
for handling irregularly-sampled time-series data, including the ODE-RNN model (Rubanova et al.,
2019), GRU-ODE-Bayes (De Brouwer et al., 2019), or neural CDE models (Kidger et al., 2020;
Morrill et al., 2020a). In addition, the time-continuous interpretation of RNN allows to leverage
the rich theory of differential equations to develop new recurrent architectures (Chang et al., 2019;
Herrera et al., 2020; Erichson et al., 2021), which are better at learning long-term dependencies.

On the other hand, the development of kernel methods for deep learning offers theoretical insights on
the functions learned by the networks (Cho and Saul, 2009; Belkin et al., 2018; Jacot et al., 2018).
Here, the general principle consists in defining a reproducing kernel Hilbert space (RKHS)—that is, a
function class H —, which is rich enough to describe the architectures of networks. A good example
is the construction of Bietti and Mairal (2017, 2019), who exhibit an RKHS for convolutional neural
networks. This kernel perspective has several advantages. First, by separating the representation of
the data from the learning process, it allows to study invariances of the representations learned by
the network. Next, by reducing the learning problem to a linear one in H , generalization bounds
can be more easily obtained. Finally, the Hilbert structure of H provides a natural metric on neural
networks, which can be used for example for regularization (Bietti et al., 2019).

⇤Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

In summary

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L f (hk, θk+1) dHt = f (Ht,Θt)dt

Fπ(x) = BhT FΠ(x) = BH1

f (h, θ) = Vσ(W h + b)

4! ResNet 6= RNN

Framing RNN as a kernel method:
A neural ODE approach

Adeline Fermanian1⇤ Pierre Marion1⇤ Jean-Philippe Vert2 Gérard Biau1

1 Sorbonne Université, CNRS,
Laboratoire de Probabilités, Statistique et Modélisation, LPSM,

F-75005 Paris, France
{adeline.fermanian, pierre.marion, gerard.biau}@sorbonne-universite.fr

2 Google Research, Brain team,
Paris, France

jpvert@google.com

Abstract

Building on the interpretation of a recurrent neural network (RNN) as a continuous-
time neural differential equation, we show, under appropriate conditions, that the
solution of a RNN can be viewed as a linear function of a specific feature set of
the input sequence, known as the signature. This connection allows us to frame
a RNN as a kernel method in a suitable reproducing kernel Hilbert space. As a
consequence, we obtain theoretical guarantees on generalization and stability for a
large class of recurrent networks. Our results are illustrated on simulated datasets.

1 Introduction

Recurrent neural networks (RNN) are among the most successful methods for modeling sequential
data. They have achieved state-of-the-art results in difficult problems such as natural language
processing (e.g., Mikolov et al., 2010; Collobert et al., 2011) or speech recognition (e.g., Hinton
et al., 2012; Graves et al., 2013). This class of neural networks has a natural interpretation in terms
of (discretization of) ordinary differential equations (ODE), which casts them in the field of neural
ODE (Chen et al., 2018). This observation has led to the development of continuous-depth models
for handling irregularly-sampled time-series data, including the ODE-RNN model (Rubanova et al.,
2019), GRU-ODE-Bayes (De Brouwer et al., 2019), or neural CDE models (Kidger et al., 2020;
Morrill et al., 2020a). In addition, the time-continuous interpretation of RNN allows to leverage
the rich theory of differential equations to develop new recurrent architectures (Chang et al., 2019;
Herrera et al., 2020; Erichson et al., 2021), which are better at learning long-term dependencies.

On the other hand, the development of kernel methods for deep learning offers theoretical insights on
the functions learned by the networks (Cho and Saul, 2009; Belkin et al., 2018; Jacot et al., 2018).
Here, the general principle consists in defining a reproducing kernel Hilbert space (RKHS)—that is, a
function class H —, which is rich enough to describe the architectures of networks. A good example
is the construction of Bietti and Mairal (2017, 2019), who exhibit an RKHS for convolutional neural
networks. This kernel perspective has several advantages. First, by separating the representation of
the data from the learning process, it allows to study invariances of the representations learned by
the network. Next, by reducing the learning problem to a linear one in H , generalization bounds
can be more easily obtained. Finally, the Hilbert structure of H provides a natural metric on neural
networks, which can be used for example for regularization (Bietti et al., 2019).

⇤Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

Stability at initialization

� Original ResNet:

h0 = Ax
hk+1 = hk + Vk+1 ReLU(Wk+1hk)

Fπ(x) = BhL.

� At initialization: A, B, (Vk)16k6L, and (Wk)16k6L
are i.i.d. Gaussian matrices. 0 20 40 60 80 100

L

101

103

105

107

109

‖hL‖/‖h0‖

+ Solution: batch normalization or scaling.

Stability at initialization

� Original ResNet:

h0 = Ax
hk+1 = hk + Vk+1 ReLU(Wk+1hk)

Fπ(x) = BhL.

� At initialization: A, B, (Vk)16k6L, and (Wk)16k6L
are i.i.d. Gaussian matrices.

0 20 40 60 80 100
L

101

103

105

107

109

‖hL‖/‖h0‖

+ Solution: batch normalization or scaling.

Stability at initialization

� Original ResNet:

h0 = Ax
hk+1 = hk + Vk+1 ReLU(Wk+1hk)

Fπ(x) = BhL.

� At initialization: A, B, (Vk)16k6L, and (Wk)16k6L
are i.i.d. Gaussian matrices. 0 20 40 60 80 100

L

101

103

105

107

109

‖hL‖/‖h0‖

+ Solution: batch normalization or scaling.

Stability at initialization

� Original ResNet:

h0 = Ax
hk+1 = hk + Vk+1 ReLU(Wk+1hk)

Fπ(x) = BhL.

� At initialization: A, B, (Vk)16k6L, and (Wk)16k6L
are i.i.d. Gaussian matrices. 0 20 40 60 80 100

L

101

103

105

107

109

‖hL‖/‖h0‖

+ Solution: batch normalization or scaling.

Scaling ResNets

� A scaling factor 1/Lβ :

hk+1 = hk +
1

Lβ
Vk+1 ReLU(Wk+1hk).

� Question: choice of β.

� β = 0 (original ResNets)? β = 1 (neural ODE)?

� Many empirical studies, no consensus.

� Our approach: mathematical analysis at initialization.

Scaling ResNets

� A scaling factor 1/Lβ :

hk+1 = hk +
1

Lβ
Vk+1 ReLU(Wk+1hk).

� Question: choice of β.

� β = 0 (original ResNets)? β = 1 (neural ODE)?

� Many empirical studies, no consensus.

� Our approach: mathematical analysis at initialization.

Scaling ResNets

� A scaling factor 1/Lβ :

hk+1 = hk +
1

Lβ
Vk+1 ReLU(Wk+1hk).

� Question: choice of β.

� β = 0 (original ResNets)?

β = 1 (neural ODE)?

� Many empirical studies, no consensus.

� Our approach: mathematical analysis at initialization.

Scaling ResNets

� A scaling factor 1/Lβ :

hk+1 = hk +
1

Lβ
Vk+1 ReLU(Wk+1hk).

� Question: choice of β.

� β = 0 (original ResNets)? β = 1 (neural ODE)?

� Many empirical studies, no consensus.

� Our approach: mathematical analysis at initialization.

Scaling ResNets

� A scaling factor 1/Lβ :

hk+1 = hk +
1

Lβ
Vk+1 ReLU(Wk+1hk).

� Question: choice of β.

� β = 0 (original ResNets)? β = 1 (neural ODE)?

� Many empirical studies, no consensus.

� Our approach: mathematical analysis at initialization.

Scaling ResNets

� A scaling factor 1/Lβ :

hk+1 = hk +
1

Lβ
Vk+1 ReLU(Wk+1hk).

� Question: choice of β.

� β = 0 (original ResNets)? β = 1 (neural ODE)?

� Many empirical studies, no consensus.

� Our approach: mathematical analysis at initialization.

Scaling with standard initialization

0 200 400 600 800 1000
L

0.2

0.4

0.6

0.8

(a) ‖hL − h0‖/‖h0‖, β = 1

0 200 400 600 800 1000
L

0

2000

4000

6000

8000

(b) ‖hL − h0‖/‖h0‖, β = 0.25

0 200 400 600 800 1000
L

1.200

1.225

1.250

1.275

1.300

1.325

1.350

(c) ‖hL − h0‖/‖h0‖, β = 0.5

� With an i.i.d. initialization, the critical value for scaling is β = 1/2.

� Similar results (identity/explosion/stability) for the gradients.

� Not the ODE scaling!🤔

Scaling with standard initialization

0 200 400 600 800 1000
L

0.2

0.4

0.6

0.8

(a) ‖hL − h0‖/‖h0‖, β = 1

0 200 400 600 800 1000
L

0

2000

4000

6000

8000

(b) ‖hL − h0‖/‖h0‖, β = 0.25

0 200 400 600 800 1000
L

1.200

1.225

1.250

1.275

1.300

1.325

1.350

(c) ‖hL − h0‖/‖h0‖, β = 0.5

� With an i.i.d. initialization, the critical value for scaling is β = 1/2.

� Similar results (identity/explosion/stability) for the gradients.

� Not the ODE scaling!🤔

Scaling with standard initialization

0 200 400 600 800 1000
L

0.2

0.4

0.6

0.8

(a) ‖hL − h0‖/‖h0‖, β = 1

0 200 400 600 800 1000
L

0

2000

4000

6000

8000

(b) ‖hL − h0‖/‖h0‖, β = 0.25

0 200 400 600 800 1000
L

1.200

1.225

1.250

1.275

1.300

1.325

1.350

(c) ‖hL − h0‖/‖h0‖, β = 0.5

� With an i.i.d. initialization, the critical value for scaling is β = 1/2.

� Similar results (identity/explosion/stability) for the gradients.

� Not the ODE scaling!🤔

Scaling with standard initialization

0 200 400 600 800 1000
L

0.2

0.4

0.6

0.8

(a) ‖hL − h0‖/‖h0‖, β = 1

0 200 400 600 800 1000
L

0

2000

4000

6000

8000

(b) ‖hL − h0‖/‖h0‖, β = 0.25

0 200 400 600 800 1000
L

1.200

1.225

1.250

1.275

1.300

1.325

1.350

(c) ‖hL − h0‖/‖h0‖, β = 0.5

� With an i.i.d. initialization, the critical value for scaling is β = 1/2.

� Similar results (identity/explosion/stability) for the gradients.

� Not the ODE scaling!🤔

Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then, with probability at least 1− δ,

exp
(
3

8
−

√
22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability

Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then, with probability at least 1− δ,

exp
(
3

8
−
√

22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability

Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0.

→ identity

2. If β < 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then, with probability at least 1− δ,

exp
(
3

8
−
√

22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability

Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then, with probability at least 1− δ,

exp
(
3

8
−
√

22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability

Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞.

→ explosion

3. If β = 1/2

then, with probability at least 1− δ,

exp
(
3

8
−
√

22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability

Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then, with probability at least 1− δ,

exp
(
3

8
−
√

22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability

Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2 then, with probability at least 1− δ,

exp
(
3

8
−

√
22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability

Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2 then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2 then, with probability at least 1− δ,

exp
(
3

8
−

√
22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1. → stability

Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1 → wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z) → flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣(pL

‖pL‖

)>
qL(z)

∣∣∣2).

Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1 → wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z) → flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣(pL

‖pL‖

)>
qL(z)

∣∣∣2).

Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1

→ wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z) → flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣(pL

‖pL‖

)>
qL(z)

∣∣∣2).

Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1 → wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z) → flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣(pL

‖pL‖

)>
qL(z)

∣∣∣2).

Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1 → wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z)

→ flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣(pL

‖pL‖

)>
qL(z)

∣∣∣2).

Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1 → wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z) → flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣(pL

‖pL‖

)>
qL(z)

∣∣∣2).

Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1 → wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z) → flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣(pL

‖pL‖

)>
qL(z)

∣∣∣2).

Scaling with standard initialization – Gradients

0 250 500 750 1000
L

0.05

0.10

0.15

0.20

(a) ‖p0 − pL‖/‖pL‖, β = 1

0 250 500 750 1000
L

0

500

1000

1500

2000

2500

(b) ‖p0 − pL‖/‖pL‖, β = 0.25

0 250 500 750 1000
L

0.74

0.76

0.78

0.80

0.82

0.84

0.86

(c) ‖p0 − pL‖/‖pL‖, β = 0.5

Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2

then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability

Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2

then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability

Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0.

→ identity

2. If β < 1/2

then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability

Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability

Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2 then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞.

→ explosion

3. If β = 1/2

then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability

Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2 then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability

Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2 then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2 then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability

Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2 then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2 then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2 then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1. → stability

Stability – output/gradients

1.0 1.2 1.4 1.6
L

0

200

400

600

800

1000

‖hL‖/‖h0‖

(a) Distribution of ‖hL‖/‖h0‖

1.0 1.2 1.4 1.6
L

0

200

400

600

800

1000

‖ ∂L∂h0
‖

‖ ∂L∂hL‖

(b) Distribution of ‖ ∂Ln
∂h0

‖/‖ ∂Ln
∂hL

‖

How to interpret the critical value β = 1/2?

� Simple ResNet: hk+1 = hk + 1√
L Vk+1σ(hk).

� The entries of Vk are i.i.d. N (0, 1/d).

� For B : [0, 1]→ Rd×d a (d × d)-dimensional Brownian motion

B(k+1)/L,i,j − Bk/L,i,j ∼ N
(
0,

1

L

)
.

� Consequence:

h0 = Ax, h>
k+1 = h>

k +
1√
d
σ(h>

k)(B(k+1)/L − Bk/L), 0 6 k 6 L − 1.

How to interpret the critical value β = 1/2?

� Simple ResNet: hk+1 = hk + 1√
L Vk+1σ(hk).

� The entries of Vk are i.i.d. N (0, 1/d).

� For B : [0, 1]→ Rd×d a (d × d)-dimensional Brownian motion

B(k+1)/L,i,j − Bk/L,i,j ∼ N
(
0,

1

L

)
.

� Consequence:

h0 = Ax, h>
k+1 = h>

k +
1√
d
σ(h>

k)(B(k+1)/L − Bk/L), 0 6 k 6 L − 1.

How to interpret the critical value β = 1/2?

� Simple ResNet: hk+1 = hk + 1√
L Vk+1σ(hk).

� The entries of Vk are i.i.d. N (0, 1/d).

� For B : [0, 1]→ Rd×d a (d × d)-dimensional Brownian motion

B(k+1)/L,i,j − Bk/L,i,j ∼ N
(
0,

1

L

)
.

� Consequence:

h0 = Ax, h>
k+1 = h>

k +
1√
d
σ(h>

k)(B(k+1)/L − Bk/L), 0 6 k 6 L − 1.

How to interpret the critical value β = 1/2?

� Simple ResNet: hk+1 = hk + 1√
L Vk+1σ(hk).

� The entries of Vk are i.i.d. N (0, 1/d).

� For B : [0, 1]→ Rd×d a (d × d)-dimensional Brownian motion

B(k+1)/L,i,j − Bk/L,i,j ∼ N
(
0,

1

L

)
.

� Consequence:

h0 = Ax, h>
k+1 = h>

k +
1√
d
σ(h>

k)(B(k+1)/L − Bk/L), 0 6 k 6 L − 1.

How to interpret the critical value β = 1/2?

� Simple ResNet: hk+1 = hk + 1√
L Vk+1σ(hk).

� The entries of Vk are i.i.d. N (0, 1/d).

� For B : [0, 1]→ Rd×d a (d × d)-dimensional Brownian motion

B(k+1)/L,i,j − Bk/L,i,j ∼ N
(
0,

1

L

)
.

� Consequence:

h0 = Ax, h>
k+1 = h>

k +
1√
d
σ(h>

k)(B(k+1)/L − Bk/L), 0 6 k 6 L − 1.

SDE regime

ResNet Neural SDE

h0 = Ax H0 = Ax

hk+1 = hk + 1√
L Vk+1σ(hk) dH>

t = 1√
dσ(H

>
t)dBt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the entries of Vk are i.i.d. Gaussian N (0, 1/d) and σ is Lipschitz continuous.

Then the SDE has a unique solution H and, for any 0 6 k 6 L,

E
(
‖Hk/L − hk‖

)
6

C√
L
.

SDE regime

ResNet Neural SDE

h0 = Ax H0 = Ax

hk+1 = hk + 1√
L Vk+1σ(hk) dH>

t = 1√
dσ(H

>
t)dBt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the entries of Vk are i.i.d. Gaussian N (0, 1/d) and σ is Lipschitz continuous.

Then the SDE has a unique solution H and, for any 0 6 k 6 L,

E
(
‖Hk/L − hk‖

)
6

C√
L
.

SDE regime

ResNet Neural SDE

h0 = Ax H0 = Ax

hk+1 = hk + 1√
L Vk+1σ(hk) dH>

t = 1√
dσ(H

>
t)dBt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the entries of Vk are i.i.d. Gaussian N (0, 1/d) and σ is Lipschitz continuous.

Then the SDE has a unique solution H and, for any 0 6 k 6 L,

E
(
‖Hk/L − hk‖

)
6

C√
L
.

Summary so far

For deep ResNets with i.i.d. initialization:

. the critical value for scaling is β = 1/2

. this value corresponds in the deep limit to a SDE.

Remaining questions:

. Can we obtain other limits? For example ODEs?

. Do they correspond to the same critical value?

Key: link between β and the weight distributions.

Summary so far

For deep ResNets with i.i.d. initialization:

. the critical value for scaling is β = 1/2

. this value corresponds in the deep limit to a SDE.

Remaining questions:

. Can we obtain other limits? For example ODEs?

. Do they correspond to the same critical value?

Key: link between β and the weight distributions.

Summary so far

For deep ResNets with i.i.d. initialization:

. the critical value for scaling is β = 1/2

. this value corresponds in the deep limit to a SDE.

Remaining questions:

. Can we obtain other limits? For example ODEs?

. Do they correspond to the same critical value?

Key: link between β and the weight distributions.

Summary so far

For deep ResNets with i.i.d. initialization:

. the critical value for scaling is β = 1/2

. this value corresponds in the deep limit to a SDE.

Remaining questions:

. Can we obtain other limits? For example ODEs?

. Do they correspond to the same critical value?

Key: link between β and the weight distributions.

Summary so far

For deep ResNets with i.i.d. initialization:

. the critical value for scaling is β = 1/2

. this value corresponds in the deep limit to a SDE.

Remaining questions:

. Can we obtain other limits? For example ODEs?

. Do they correspond to the same critical value?

Key: link between β and the weight distributions.

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d (θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V andΘ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2).

Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d

(θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V andΘ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2).

Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d (θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V andΘ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2).

Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d (θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V andΘ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2).

Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d (θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V andΘ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2).

Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d (θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V and Θ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2).

Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d (θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V and Θ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2).

Scaling and weight regularity

0 200 400 600 800 1000
layer index

−0.0025

0.0000

0.0025

0.0050

0.0075

(a) I.i.d.

0 200 400 600 800 1000
layer index

−1.0

−0.5

0.0

0.5

1.0

(b) Smooth

Scaling and weight regularity

0 200 400 600 800 1000
layer index

−0.0025

0.0000

0.0025

0.0050

0.0075

(a) I.i.d.

0 200 400 600 800 1000
layer index

−1.0

−0.5

0.0

0.5

1.0

(b) Smooth

ODE regime

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L Vk+1g(hk, θk+1) dHt = Vtg(Ht,Θt)dt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.

Then the ODE has a unique solution H and, a.s., for any 0 6 k 6 L,

‖Hk/L − hk‖ 6
c
L
.

ODE regime

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L Vk+1g(hk, θk+1) dHt = Vtg(Ht,Θt)dt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.

Then the ODE has a unique solution H and, a.s., for any 0 6 k 6 L,

‖Hk/L − hk‖ 6
c
L
.

ODE regime

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L Vk+1g(hk, θk+1) dHt = Vtg(Ht,Θt)dt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.

Then the ODE has a unique solution H and, a.s., for any 0 6 k 6 L,

‖Hk/L − hk‖ 6
c
L
.

Scaling with a smooth initialization

0 250 500 750 1000
L

0.000

0.005

0.010

0.015

0.020

(a) ‖hL − h0‖/‖h0‖, β = 2

0 250 500 750 1000
L

0

1

2

3

×106

(b) ‖hL − h0‖/‖h0‖, β = 0.5

0 250 500 750 1000
L

0.190

0.195

0.200

0.205

0.210

0.215

(c) ‖hL − h0‖/‖h0‖, β = 1

� Again 3 cases: identity/explosion/stability.
� With a smooth initialization, the critical scaling is β = 1.
� It is the scaling that corresponds in the deep limit to an ODE.

Scaling with a smooth initialization

0 250 500 750 1000
L

0.000

0.005

0.010

0.015

0.020

(a) ‖hL − h0‖/‖h0‖, β = 2

0 250 500 750 1000
L

0

1

2

3

×106

(b) ‖hL − h0‖/‖h0‖, β = 0.5

0 250 500 750 1000
L

0.190

0.195

0.200

0.205

0.210

0.215

(c) ‖hL − h0‖/‖h0‖, β = 1

� Again 3 cases: identity/explosion/stability.

� With a smooth initialization, the critical scaling is β = 1.
� It is the scaling that corresponds in the deep limit to an ODE.

Scaling with a smooth initialization

0 250 500 750 1000
L

0.000

0.005

0.010

0.015

0.020

(a) ‖hL − h0‖/‖h0‖, β = 2

0 250 500 750 1000
L

0

1

2

3

×106

(b) ‖hL − h0‖/‖h0‖, β = 0.5

0 250 500 750 1000
L

0.190

0.195

0.200

0.205

0.210

0.215

(c) ‖hL − h0‖/‖h0‖, β = 1

� Again 3 cases: identity/explosion/stability.
� With a smooth initialization, the critical scaling is β = 1.

� It is the scaling that corresponds in the deep limit to an ODE.

Scaling with a smooth initialization

0 250 500 750 1000
L

0.000

0.005

0.010

0.015

0.020

(a) ‖hL − h0‖/‖h0‖, β = 2

0 250 500 750 1000
L

0

1

2

3

×106

(b) ‖hL − h0‖/‖h0‖, β = 0.5

0 250 500 750 1000
L

0.190

0.195

0.200

0.205

0.210

0.215

(c) ‖hL − h0‖/‖h0‖, β = 1

� Again 3 cases: identity/explosion/stability.
� With a smooth initialization, the critical scaling is β = 1.
� It is the scaling that corresponds in the deep limit to an ODE.

Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1

then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1

then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1

+ assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion

Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1

then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1

then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1

+ assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion

Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1 then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0.

→ identity

2. If β = 1

then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1

+ assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion

Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1 then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1

then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1

+ assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion

Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1 then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1 then, a.s., ‖hL − h0‖/‖h0‖ 6 c.

→ stability

3. If β < 1

+ assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion

Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1 then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1 then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1

+ assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion

Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1 then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1 then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1 + assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞.

→ explosion

Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1 then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1 then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1 + assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion

Intermediate regimes

� Challenge: describe the transition between the i.i.d. and smooth cases.

� We initialize the weights as increments of a fractional Brownian motion (BH
t)t∈[0,1].

� Recall: BH is Gaussian, starts at zero, has zero expectation, and covariance function

E(BH
s BH

t) =
1

2
(|s|2H + |t|2H − |t − s|2H), 0 6 s, t 6 1.

� The Hurst index H ∈ (0, 1) describes the raggedness of the process.

Intermediate regimes

� Challenge: describe the transition between the i.i.d. and smooth cases.

� We initialize the weights as increments of a fractional Brownian motion (BH
t)t∈[0,1].

� Recall: BH is Gaussian, starts at zero, has zero expectation, and covariance function

E(BH
s BH

t) =
1

2
(|s|2H + |t|2H − |t − s|2H), 0 6 s, t 6 1.

� The Hurst index H ∈ (0, 1) describes the raggedness of the process.

Intermediate regimes

� Challenge: describe the transition between the i.i.d. and smooth cases.

� We initialize the weights as increments of a fractional Brownian motion (BH
t)t∈[0,1].

� Recall: BH is Gaussian, starts at zero, has zero expectation, and covariance function

E(BH
s BH

t) =
1

2
(|s|2H + |t|2H − |t − s|2H), 0 6 s, t 6 1.

� The Hurst index H ∈ (0, 1) describes the raggedness of the process.

Intermediate regimes

� Challenge: describe the transition between the i.i.d. and smooth cases.

� We initialize the weights as increments of a fractional Brownian motion (BH
t)t∈[0,1].

� Recall: BH is Gaussian, starts at zero, has zero expectation, and covariance function

E(BH
s BH

t) =
1

2
(|s|2H + |t|2H − |t − s|2H), 0 6 s, t 6 1.

� The Hurst index H ∈ (0, 1) describes the raggedness of the process.

0 200 400 600 800 1000

−3

−2

−1

0

1

(a) H = 0.2

0 200 400 600 800 1000

−1.00

−0.75

−0.50

−0.25

0.00

(b) H = 0.5

0 200 400 600 800 1000

−0.8

−0.6

−0.4

−0.2

0.0

0.2

(c) H = 0.8

. H = 1/2: standard Brownian motion (SDE regime).

. H < 1/2: the increments are negatively correlated.

. H > 1/2: the increments are positively correlated.

. When H → 1: the trajectories converge to linear functions (ODE regime).

0 200 400 600 800 1000

−3

−2

−1

0

1

(a) H = 0.2

0 200 400 600 800 1000

−1.00

−0.75

−0.50

−0.25

0.00

(b) H = 0.5

0 200 400 600 800 1000

−0.8

−0.6

−0.4

−0.2

0.0

0.2

(c) H = 0.8

. H = 1/2: standard Brownian motion (SDE regime).

. H < 1/2: the increments are negatively correlated.

. H > 1/2: the increments are positively correlated.

. When H → 1: the trajectories converge to linear functions (ODE regime).

0 200 400 600 800 1000

−3

−2

−1

0

1

(a) H = 0.2

0 200 400 600 800 1000

−1.00

−0.75

−0.50

−0.25

0.00

(b) H = 0.5

0 200 400 600 800 1000

−0.8

−0.6

−0.4

−0.2

0.0

0.2

(c) H = 0.8

. H = 1/2: standard Brownian motion (SDE regime).

. H < 1/2: the increments are negatively correlated.

. H > 1/2: the increments are positively correlated.

. When H → 1: the trajectories converge to linear functions (ODE regime).

0 200 400 600 800 1000

−3

−2

−1

0

1

(a) H = 0.2

0 200 400 600 800 1000

−1.00

−0.75

−0.50

−0.25

0.00

(b) H = 0.5

0 200 400 600 800 1000

−0.8

−0.6

−0.4

−0.2

0.0

0.2

(c) H = 0.8

. H = 1/2: standard Brownian motion (SDE regime).

. H < 1/2: the increments are negatively correlated.

. H > 1/2: the increments are positively correlated.

. When H → 1: the trajectories converge to linear functions (ODE regime).

A continuum of intermediate regularities

A continuum of intermediate regularities

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

Training

Before training

0 200 400 600 800 1000

−0.0050

−0.0025

0.0000

0.0025

0.0050

After training

0 200 400 600 800 1000

−0.4

−0.2

0.0

0.2

0.4

I.i.d. initialization, β = 1/2

� The weights after training still exhibit a strong structure as functions of the layer.

� Their regularity is influenced by both the initialization and the choice of β.

Training

Before training

0 200 400 600 800 1000

−0.0050

−0.0025

0.0000

0.0025

0.0050

After training

0 200 400 600 800 1000

−4

−2

0

2

4

I.i.d. initialization, β = 1

� The weights after training still exhibit a strong structure as functions of the layer.

� Their regularity is influenced by both the initialization and the choice of β.

Training

Before training

0 200 400 600 800 1000

−0.5

0.0

0.5

1.0

1.5

After training

0 200 400 600 800 1000

−4

−2

0

2

Smooth initialization, β = 1

� The weights after training still exhibit a strong structure as functions of the layer.

� Their regularity is influenced by both the initialization and the choice of β.

Training

Before training

0 200 400 600 800 1000

−0.5

0.0

0.5

1.0

1.5

After training

0 200 400 600 800 1000

−4

−2

0

2

Smooth initialization, β = 1

� The weights after training still exhibit a strong structure as functions of the layer.

� Their regularity is influenced by both the initialization and the choice of β.

Training

Before training

0 200 400 600 800 1000

−0.5

0.0

0.5

1.0

1.5

After training

0 200 400 600 800 1000

−4

−2

0

2

Smooth initialization, β = 1

� The weights after training still exhibit a strong structure as functions of the layer.

� Their regularity is influenced by both the initialization and the choice of β.

Performance after training

0.
1

0.
19

0.
28

0.
37

0.
46

0.
54

0.
63

0.
72

0.
81 0.

9

regularity

0.9
0.81
0.72
0.63
0.54
0.46
0.37
0.28
0.19

0.1

sc
al

in
g

0.0

0.2

0.4

0.6

0.8

1.0

(a) On MNIST

0.
1

0.
19

0.
28

0.
37

0.
46

0.
54

0.
63

0.
72

0.
81 0.
9

regularity

0.1

0.19

0.28

0.37

0.46

0.54

0.63

0.72

0.81

0.9

sc
al

in
g

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(b) On CIFAR-10

Conclusion

� Deep limits allow to understand scaling and initialization strategies for ResNets.

� With standard initialization the correct scaling is β = 1/2.

� To train very deep ResNets, it is important to adapt scaling to the weight regularity.

� Perspectives: what about training? how should we choose the regularity for a given
problem?

� To know more: arXiv:2206.06929.

https://arxiv.org/abs/2206.06929

Conclusion

� Deep limits allow to understand scaling and initialization strategies for ResNets.

� With standard initialization the correct scaling is β = 1/2.

� To train very deep ResNets, it is important to adapt scaling to the weight regularity.

� Perspectives: what about training? how should we choose the regularity for a given
problem?

� To know more: arXiv:2206.06929.

https://arxiv.org/abs/2206.06929

Conclusion

� Deep limits allow to understand scaling and initialization strategies for ResNets.

� With standard initialization the correct scaling is β = 1/2.

� To train very deep ResNets, it is important to adapt scaling to the weight regularity.

� Perspectives: what about training? how should we choose the regularity for a given
problem?

� To know more: arXiv:2206.06929.

https://arxiv.org/abs/2206.06929

Conclusion

� Deep limits allow to understand scaling and initialization strategies for ResNets.

� With standard initialization the correct scaling is β = 1/2.

� To train very deep ResNets, it is important to adapt scaling to the weight regularity.

� Perspectives: what about training? how should we choose the regularity for a given
problem?

� To know more: arXiv:2206.06929.

https://arxiv.org/abs/2206.06929

Conclusion

� Deep limits allow to understand scaling and initialization strategies for ResNets.

� With standard initialization the correct scaling is β = 1/2.

� To train very deep ResNets, it is important to adapt scaling to the weight regularity.

� Perspectives: what about training? how should we choose the regularity for a given
problem?

� To know more: arXiv:2206.06929.

https://arxiv.org/abs/2206.06929

Thank you!

� gerard.biau@sorbonne-universite.fr
� perso.lpsm.paris/∼biau

mailto:gerard.biau@sorbonne-universite.fr
https://perso.lpsm.paris/~biau

	Learning with ResNets
	Scaling deep ResNets
	Scaling in the continuous-time setting
	Beyond initialization

