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How most people see the supervised learning problem

https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730

https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730


How machine learners see the supervised learning problem

https://medium.datadriveninvestor.com/depth-estimation-with-deep-neural-networks-part-2-81ee374888eb

https://medium.datadriveninvestor.com/depth-estimation-with-deep-neural-networks-part-2-81ee374888eb


How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).
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Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:

h0 = Ax, hk+1 = hk + f (hk, θk+1), Fπ(x) = BhL.

� Different forms for f : Rd × Rp → Rd = different architectures.

Original Parametric Simple General ResNet

f (hk, θk+1) = Vk+1g(hk, θk+1)

. g : Rd × Rp → Rd

. θk = parameters

. π = (A,B, (Vk)16k6L, (θk)16k6L)
He et al. (2016)



The revolution of ResNets

Examples from the ImageNet dataset

https://blog.roboflow.com/introduction-to-imagenet

https://blog.roboflow.com/introduction-to-imagenet


The revolution of ResNets

ImageNet performance over time

https://semiengineering.com/
new-vision-technologies-for-real-world-applications

https://semiengineering.com/new-vision-technologies-for-real-world-applications
https://semiengineering.com/new-vision-technologies-for-real-world-applications
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New network architectures: Runge-Kutta networks

Benning et al. (2019)



New network architectures: antisymmetric networks

Chang et al. (2019)



In summary

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L f (hk, θk+1) dHt = f (Ht,Θt)dt

Fπ(x) = BhT FΠ(x) = BH1

f (h, θ) = Vσ(W h + b)

4! ResNet 6= RNN

Framing RNN as a kernel method:
A neural ODE approach

Adeline Fermanian1⇤ Pierre Marion1⇤ Jean-Philippe Vert2 Gérard Biau1

1 Sorbonne Université, CNRS,
Laboratoire de Probabilités, Statistique et Modélisation, LPSM,

F-75005 Paris, France
{adeline.fermanian, pierre.marion, gerard.biau}@sorbonne-universite.fr

2 Google Research, Brain team,
Paris, France

jpvert@google.com

Abstract

Building on the interpretation of a recurrent neural network (RNN) as a continuous-
time neural differential equation, we show, under appropriate conditions, that the
solution of a RNN can be viewed as a linear function of a specific feature set of
the input sequence, known as the signature. This connection allows us to frame
a RNN as a kernel method in a suitable reproducing kernel Hilbert space. As a
consequence, we obtain theoretical guarantees on generalization and stability for a
large class of recurrent networks. Our results are illustrated on simulated datasets.

1 Introduction

Recurrent neural networks (RNN) are among the most successful methods for modeling sequential
data. They have achieved state-of-the-art results in difficult problems such as natural language
processing (e.g., Mikolov et al., 2010; Collobert et al., 2011) or speech recognition (e.g., Hinton
et al., 2012; Graves et al., 2013). This class of neural networks has a natural interpretation in terms
of (discretization of) ordinary differential equations (ODE), which casts them in the field of neural
ODE (Chen et al., 2018). This observation has led to the development of continuous-depth models
for handling irregularly-sampled time-series data, including the ODE-RNN model (Rubanova et al.,
2019), GRU-ODE-Bayes (De Brouwer et al., 2019), or neural CDE models (Kidger et al., 2020;
Morrill et al., 2020a). In addition, the time-continuous interpretation of RNN allows to leverage
the rich theory of differential equations to develop new recurrent architectures (Chang et al., 2019;
Herrera et al., 2020; Erichson et al., 2021), which are better at learning long-term dependencies.

On the other hand, the development of kernel methods for deep learning offers theoretical insights on
the functions learned by the networks (Cho and Saul, 2009; Belkin et al., 2018; Jacot et al., 2018).
Here, the general principle consists in defining a reproducing kernel Hilbert space (RKHS)—that is, a
function class H —, which is rich enough to describe the architectures of networks. A good example
is the construction of Bietti and Mairal (2017, 2019), who exhibit an RKHS for convolutional neural
networks. This kernel perspective has several advantages. First, by separating the representation of
the data from the learning process, it allows to study invariances of the representations learned by
the network. Next, by reducing the learning problem to a linear one in H , generalization bounds
can be more easily obtained. Finally, the Hilbert structure of H provides a natural metric on neural
networks, which can be used for example for regularization (Bietti et al., 2019).

⇤Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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Stability at initialization

� Original ResNet:

h0 = Ax
hk+1 = hk + Vk+1 ReLU(Wk+1hk)

Fπ(x) = BhL.

� At initialization: A, B, (Vk)16k6L, and (Wk)16k6L
are i.i.d. Gaussian matrices. 0 20 40 60 80 100

L

101
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105
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109

‖hL‖/‖h0‖

+ Solution: batch normalization or scaling.
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Scaling ResNets

� A scaling factor 1/Lβ :

hk+1 = hk +
1

Lβ
Vk+1 ReLU(Wk+1hk).

� Question: choice of β.

� β = 0 (original ResNets)? β = 1 (neural ODE)?

� Many empirical studies, no consensus.

� Our approach: mathematical analysis at initialization.
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Scaling with standard initialization
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(a) ‖hL − h0‖/‖h0‖, β = 1
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(c) ‖hL − h0‖/‖h0‖, β = 0.5

� With an i.i.d. initialization, the critical value for scaling is β = 1/2.

� Similar results (identity/explosion/stability) for the gradients.

� Not the ODE scaling!🤔
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� With an i.i.d. initialization, the critical value for scaling is β = 1/2.

� Similar results (identity/explosion/stability) for the gradients.

� Not the ODE scaling!🤔



Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then, with probability at least 1− δ,

exp
(
3

8
−

√
22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability
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Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1 → wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z) → flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣( pL

‖pL‖

)>
qL(z)

∣∣∣2).
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Scaling with standard initialization – Gradients
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Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2

then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then E(‖p0 − pL‖/‖pL‖)
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability
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Stability – output/gradients
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How to interpret the critical value β = 1/2?

� Simple ResNet: hk+1 = hk + 1√
L Vk+1σ(hk).

� The entries of Vk are i.i.d. N (0, 1/d).

� For B : [0, 1]→ Rd×d a (d × d)-dimensional Brownian motion

B(k+1)/L,i,j − Bk/L,i,j ∼ N
(
0,

1

L

)
.

� Consequence:

h0 = Ax, h>
k+1 = h>

k +
1√
d
σ(h>

k )(B(k+1)/L − Bk/L), 0 6 k 6 L − 1.
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SDE regime

ResNet Neural SDE

h0 = Ax H0 = Ax

hk+1 = hk + 1√
L Vk+1σ(hk) dH>

t = 1√
dσ(H

>
t )dBt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the entries of Vk are i.i.d. Gaussian N (0, 1/d) and σ is Lipschitz continuous.

Then the SDE has a unique solution H and, for any 0 6 k 6 L,

E
(
‖Hk/L − hk‖

)
6

C√
L
.
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Summary so far

For deep ResNets with i.i.d. initialization:

. the critical value for scaling is β = 1/2

. this value corresponds in the deep limit to a SDE.

Remaining questions:

. Can we obtain other limits? For example ODEs?

. Do they correspond to the same critical value?

Key: link between β and the weight distributions.
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. Do they correspond to the same critical value?

Key: link between β and the weight distributions.
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Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d (θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V andΘ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2 ).
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ODE regime

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L Vk+1g(hk, θk+1) dHt = Vtg(Ht,Θt)dt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.

Then the ODE has a unique solution H and, a.s., for any 0 6 k 6 L,

‖Hk/L − hk‖ 6
c
L
.
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Scaling with a smooth initialization
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� Again 3 cases: identity/explosion/stability.
� With a smooth initialization, the critical scaling is β = 1.
� It is the scaling that corresponds in the deep limit to an ODE.
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Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1

then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1

then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1

+ assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion
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Intermediate regimes

� Challenge: describe the transition between the i.i.d. and smooth cases.

� We initialize the weights as increments of a fractional Brownian motion (BH
t )t∈[0,1].

� Recall: BH is Gaussian, starts at zero, has zero expectation, and covariance function

E(BH
s BH

t ) =
1

2
(|s|2H + |t|2H − |t − s|2H), 0 6 s, t 6 1.

� The Hurst index H ∈ (0, 1) describes the raggedness of the process.
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. H < 1/2: the increments are negatively correlated.

. H > 1/2: the increments are positively correlated.

. When H → 1: the trajectories converge to linear functions (ODE regime).
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� The weights after training still exhibit a strong structure as functions of the layer.

� Their regularity is influenced by both the initialization and the choice of β.
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Performance after training
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Conclusion

� Deep limits allow to understand scaling and initialization strategies for ResNets.

� With standard initialization the correct scaling is β = 1/2.

� To train very deep ResNets, it is important to adapt scaling to the weight regularity.

� Perspectives: what about training? how should we choose the regularity for a given
problem?

� To know more: arXiv:2206.06929.

https://arxiv.org/abs/2206.06929
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Thank you!

� gerard.biau@sorbonne-universite.fr
� perso.lpsm.paris/∼biau

mailto:gerard.biau@sorbonne-universite.fr
https://perso.lpsm.paris/~biau
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