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Learning with ResNets



How most people see the supervised learning problem

Learn how to build an image-recognizing convolutional neural
network with Python and Keras in less than 15minutes!

L . .
F: -10m d *
@ abian Bosler Oct 5,2019 - 10 min rea N

14% dog

0,
85% Elon Musk 100% Elon Musk

100% cat 97% dog

-
=

https://towardsdatascience.com/cat-dog-or-elon-musk- 145658489730


https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730

How machine learners see the supervised learning problem
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Goal: understand the relationship between z € R™ and y € R,

Data: (21, y1)s - -+ (@Tn, yn) € R™ X R™u jid. ~ (z,y).

Model: {Fy : R™ s R 7 € II}.

Loss function £ : Rt x Rt — R, .

Regression: £(Fr(z),y) = (y— Fx(2))* Binary classification: £(Fr(z),y) = Liyr, (5)<0)-
Theoretical risk minimization: choose

™ € argmin £ (7) = E(¢(Fr(z),y)).
well

¥ Empirical risk minimization: choose

T, € argmin %, (1) = 1 > U(Fr (), vi)-

mell n-



How statisticians see the supervised learning problem

¥ Model: {F, : R s R v € 1},
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Original ResNet

%
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Residual neural networks (ResNets)

¥ Sequence of hidden states hy, ..., h;, € R* defined by recurrence:
hy = A.’JZ, hk+1 = hy +f(hk;, 9k;+l); FW(IE) = Bhy,.

> Different forms for f : R% x R? — R¢ = different architectures.

General ResNet N

weight layer

F(hiy Org1) = Vier19(hi, Or41) F(x) N
identity
> g:R*x RP - R? F(x) +x

> 0, = parameters

> m= (4, B, (Vi)igr<r, (Or)1<r<L)

He et al. (2016)



The revolution of ResNets
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Examples from the ImageNet dataset

https://blog.roboflow.com/introduction-to-imagenet
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The revolution of ResNets
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The revolution of ResNets
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Deep learning —

¥ Traditional neural networks
hit1 = f(he, Ori1)
9 Residual neural networks (He et al., 2016)
hjp1 = hy + %f(hk‘v Or+1)
¥ Neural ODE (Chen et al., 2018)

dHt == f(Ht, (—)f)dt



Deep learning —
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New network architectures: Runge-Kutta networks

Improved Euler ResNet/Euler

Kutta (3)

Kutta (4)

Benning et al. (2019)



New network architectures: antisymmetric networks
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ResNet Neural ODE

h():A.CL' H():A.Z'

iy = hi + 1 f(hi, Op1) | dHy = f(Hy, ©4)dt

Fﬂ—(x) = Bh’r FH(.I') = BH1
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ResNet Neural ODE
h() = Az HO = Az

iy = hi + 1 f(hi, Op1) | dHy = f(Hy, ©4)dt

Fﬂ—(x) = Bh’r FH(.I') = BH1
f(h,0) = Va(Wh+b)

A ResNet # RNN
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Stability at initialization

> Original ResNet:

ho = Az
hi+1 = hi + Vi RGLU( Wk'Jrlhk)
F.,,-(..’ZZ) = B}LL.

2 Atinitialization: A, B, (Vk)1<k<L, and (Wk)lgkgL
are i.i.d. Gaussian matrices.

i Solution: batch normalization or scaling.
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Scaling ResNets

¥ A scaling factor 1/1.7:
1
hi1 = hi + 7 Vi1 ReLU( Wk;+1hk).

2 Question: choice of 4.
> = 0 (original ResNets)? 7 — 1 (neural ODE)?
> Many empirical studies, no consensus.

2 Our approach: mathematical analysis at initialization.
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Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

1. If 3> 1/2 then ||hg, — holl/||Bo|| —— 0. — identity
L—oo
2. If 5 < 1/2 then ||k — hol|/| hol| %) 0. — explosion
—00

3. If 5 = 1/2 then, with probability at least 1 — 4,

3 22 l|he — hol|? 10 N
exp<§— %)—1<W<exp 1+ T + 1. — stability
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> Objective: assess the backwards dynamics of the gradients p;, = %‘Zﬂ” € R4

> Target: [|po — prll/|lpL]| when Lis large.

¥ Backpropagation formula:

1 0g(hy, Oy T
Pk = Dhy1 + Tg(aih“) Vi 1pks1  — wrong way.

¥ Our approach: with g(z) = g—Z’Sz,

Git1(2) = qu(2) + LL Vk+1ag(h+:kmqk(z) —s flow of information = v/

¥ Conclusion with

| pol|? (‘ oL\ T 2)
=E.. () a2 )-
I~ B\ () )



Scaling with standard initialization — Gradients
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Scaling with standard initialization —

Assumption: the entries of \/EVk and \/EWk are symmetric i.i.d. sub-Gaussian.

1. I3 > 12 then ||po — poll/|IpLll TP—’ 0. — identity
—00
2. If 3 < 1/2 then E(|lpo — pzll/lIpcl) LL> 0. — explosion
—00

3. If 5 =1/2 then

1 _ 2
= (_> s ]E<Hp0—p2LH ) <exp(4) —1. — stability
x Ipcl
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How to interpret the critical value § = 1/2?

> Simple ResNet: b1 = hi, + \—‘7 Vir1o(hg).
¥ The entries of Vy, are ii.d. N(0, Y/a).

> ForB:[0,1] = R%4a (d x d)-dimensional Brownian motion

1
B(k+1)/L,i,j - Bk’/L,i,j ~ N(O, Z) .

9 Consequence:

1
ho = Az, Rl =h, + ﬁa(hg)(B(Mﬂ, -By,), 0<k<L-1
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SDE regime

ResNet
ho = Az

hit1 = hy + \% Vig1o(hi)

F,T(:E) = B}LL

Proposition

Neural SDE

HO = Az
dH," = J-o(H,)dB,
FH(I) = BH1

Assumption: the entries of Vj are i.i.d. Gaussian N (0,1/d) and o is Lipschitz continuous.

Then the SDE has a unique solution H and, forany 0 < k < L,

E (|| Hy, — hill)

<
\\/z~
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)

> the critical value for scaling is 7 = /2
> this value corresponds in the deep limit to a SDE.

Remaining questions:

> Can we obtain other limits? For example ODEs?
> Do they correspond to the same critical value?

Key: link between 7 and the weight distributions.
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> the critical value for scaling is
> this value corresponds in the deep limit to a

Remaining

> Can we obtain ? For example ODEs?
> Do they correspond to the same critical value?

. link between /7 and the

NOT FAR/ENOUG
\ |
|

WENEED TO GO FURT

femegenerator.nef

rflemegenerator.net



Scaling in the continuous-time setting
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Leaving the i.i.d. world behind

> Idea: the weights (Vy)1<k<z and (0;)1<k<r are discretizations of smooth functions.
> (Viigksr = 71 [0,1] = R (0))1chcr = © 1 [0,1] — RP.
® Model:

ho = Az, hpy1 = b+ % Vig19(hi, Opr1), 0<k<L—-1,

where V= 7}/, and 0, = Oy .
Assumption: the stochastic processes 7" and O are a.s. Lipschitz continuous and bounded.

2 Example: the entries of 7 and © are independent Gaussian processes with zero

/N2
expectation and covariance K (z,z’) = exp(— (“”;;> ).
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ODE regime

ResNet Neural ODE
}LO = Az HQ = Az

hier1 = b+ 1 Vi1 g(hi, Op1) | dHy = Vig(Hy, ©,)dt

Fr(z) = Bhy, Fr(z) = BH,

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.
Then the ODE has a unique solution H and, a.s., forany 0 < k < L,

C
| — il < 7.
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> With a , the critical scaling is
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Scaling with with a smooth initialization

Assumption: 7 and © are a.s. Lipschitz continuous and bounded.

L—oco

1. If > 1 then, as., ||kt — hol|/||ho|| —— 0. — identity
2. If 5 =1 then, as., ||hr — ho||/||holl < c. — stability
[l — holl z—o0

3. If 3 <1 +assumptions, then ml?x — explosion

7ol
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Intermediate regimes

Y Challenge: describe the transition between the i.i.d. and smooth cases.
> We initialize the weights as increments of a fractional Brownian motion (Bg{)te[o,l]-

Y Recall: BY is Gaussian, starts at zero, has zero expectation, and covariance function
1
E(BP B = §(|s|2H + [P — |t — s, 0< st <1

> The Hurst index H € (0,1) describes the raggedness of the process.
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> H = 1/2: standard Brownian motion (SDE regime).
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> H = 1/2: standard Brownian motion (SDE regime).

> H < 1/2: the increments are negatively correlated.

> H > 1/2: the increments are positively correlated.
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> H = 1/2: standard Brownian motion (SDE regime).
> H < 1/2: the increments are negatively correlated.
> H > 1/2: the increments are positively correlated.

> When H — 1: the trajectories converge to linear functions (ODE regime).
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A continuum of intermediate regularities

Neural SDE regime Neural ODE regime
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Smooth initialization, 7 = |

> The weights after training still exhibit a strong structure as functions of the layer.
> Their regularity is influenced by both the initialization and the choice of /3.



Performance after training
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> Deep limits allow to understand scaling and initialization strategies for ResNets.

¥ With standard initialization the correct scaling is 5 = 1/2.
> To train very deep ResNets, it is important to adapt scaling to the weight regularity.

> Perspectives: what about training? how should we choose the regularity for a given
problem?

> To know more: arXiv:2206.06929.


https://arxiv.org/abs/2206.06929

Thank youl!

¥ gerard.biau@sorbonne-universite.fr
@ perso.lpsm.paris/~biau
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