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Examples of (high-dimensional) spatial point patterns

Eye-movement data (1)

Eye-movement (on an image or video) is
composed of

sacades : exploratory step, local, very
quick 120ms.

fixations (< 1◦ of oscillation) ; analysing
fixations allows to understand how a
subject explores an image ; locations of
fixations as well as their number are
random.

Oculo-nimbus project (Univ. Grenoble) : aim to understand mechanisms of
newborns vision

Dozens of images

Newborns of 3-, 6-, 9- and
12-month + adults control
group

' 40 subjects per age group

' 15 − 20 fixations by
subject
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Examples of (high-dimensional) spatial point patterns
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Examples of (high-dimensional) spatial point patterns

Lightning strikes in France (2)

Spatio-temporal point process : the time event as well as the
location are random.

Observed with plenty of spatial and spatio-temporal covariates :
topography, wind direction/speed, population density type
covariates, urbanization, . . .

Highly challenging in particular since the number of points is very
large (more than 2 millions).
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Examples of (high-dimensional) spatial point patterns

Data : Barro Colorado Island (Hubell et al., 1999, 2005)
(3)

W = [0, 1000m] × [0, 500m]

> 300,000 locations of trees

≈ 300 species

≈ 100 spatial covariates
observed at fine scale (altitude,
nature of soils,. . .)
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Even for one species of trees : how to
relate locations of trees to z1, . . . , zp ?

Problem : p large, covariates very
correlated.
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Standard models and methods

Intensity and conditional intensity functions

Let X be an SPP on S ⊆ Rd ; view X as a locally finite random
measure ;
A realization is of the form :

x = {x1, . . . , xn }, xi ∈W ⊂ Rd (e.g. d = 2, 3)

where xi and n are random ; W domain of observation with
volume |W | (note that S can be,,=W )
Observed patterns can be homogeneous/inhomogeneous and/or
exhibit independence between points or dependence (clustering
and/or repulsion)
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Standard models and methods

Intensity and conditional intensity functions

Or I should say Campbell vs Georgii-Nguyen-Zessin theorems

1 Let h : S → R (s.t. . . .)

E
∑
u∈X

h(u) =
∫

h(u)ρ(u)du

2 Let h : S ×Nlf → R (s.t. . . .)

E
∑
u∈X

h(u ,X \ u) = E

∫
h(u ,X)λ(u ,X)du

ρ and λ are respectively the first-order intensity function and the
(first-order) Papangelou conditional intensity function.
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Standard models and methods

Interpretation

Taking h as indicator functions we may interprete
1 ρ(u)du ≈ Probability to observe a point in the vicinity of u.
2 λ(u , x)du ≈ Probability to observe a point in the vicinity of u given

the rest of the configuration is x .

Intensity ρ(u)

100

200

300

400

ρ(.)

Conditional intensity λ(u , x)

0

100

200

λ(., x)
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Standard models and methods

Are ρ and/or λ explicit for standard models ?

Model Type of interaction Is ρ(·) explicit ? Is λ(u , x) explicit ?

Poisson no interaction
√ √

Gibbs attraction/repulsion ×
√

Cox attraction
√

×

DPP repulsion
√ √

×
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Standard models and methods

(1st-order inhomogeneous) parametric models

Standard models = exponential family models

Intensity function : β ∈ Rp , z(u) = (z1(u), . . . , zp(u))>, zi : S → R

ρ(u) = exp
(
β>z(u)

)
Papangelou conditional intensity function : ψ ∈ Rl , β ∈ Rp ;

S(u , x) = (s1(u , x), · · · , sl (u , x))>=interaction terms.

λ(u , x) = exp(β>z(u) + ψ>S(u , x))

Examples

s1(u , x) =
∑

v∈x g(‖v − u‖) PIPP ; g(r ) = 1(r ∈ (0,R))=Strauss.

s1(u , x) = |A(x ∪ u)| − |A(x)| where A(x) = ∪v∈xB (v ,R) =
area-interaction model

Geyer saturation model, piecewise Srauss models,. . .
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Standard models and methods

Aside . . .existence point process models defined on
S ⊆ Rd with prescribed ρ or λ ?

Obvious for ρ : Poisson, LGCP, Neymann-Scott point processes,
DPP,. . .

for λ⇔ existence of inhomogeneous GPP on the infinite volume ;
challenging probabilistic question even when p = 1, z1(u) = 1 !

Proposition (C., Dereudre, Vasseur(’21))

Let λ : Rd ×Nlf → R
+, finite-range (FR) and local stability (LS)

assumptions, then there exists at least one infinite volume Gibbs
measure, i.e. Gibbs model X, with Papangelou conditional intensity λ.

FR : λ(u , x) = λ(u , x ∩ B (u ,R)) for some R < ∞

LS : λ(u , x) ≤ λ̄ uniformly

Very simple to check : ok for Strauss, area-interaction, Geyer,. . .
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Standard models and methods

Standard parametric methodology

Assume we observe a single realization x of X on W .

To estimate ρ : Poisson likelihood (composite likelihood)

PLρ =
∑

u∈x∩W

log ρ(u) −
∫
W
ρ(u)du

To estimate λ : Pseudolikelihood

PLλ =
∑

u∈x∩W

log λ(u , x \ u) −
∫
W
λ(u , x)du

Remarks

PLρ is the likelihood under the Poisson case, but PL(1)
ρ remains an

estimating equation for general PP.
[Jensen and Møller’92] PLλ is the limit of a product of conditional
densities ;
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Standard models and methods

Comments :

For ρ and λ (when p = 1, i.e. stationary case)
Asymptotic results well-established as |Wn | → R

d
[Guan and Loh’07, Guan

and Waagepetersen’09] [Billot, C. and Drouilhet’08].
Weighted versions : [Guan and Shen’14] [C., Guan, Khanmohammadi and

Waagepetersen’16]

Not restricted to exponential family models [Guan and Waagepeterser’09],
[Coeurjolly and Drouilhet’10], and for GPP to non hereditary models
[Dereudre and Lavancier’09]

Specifically for ρ : optimal estimation (quasilikelihood) [Guan, Jalilian

and Waagepetersen’15], mispecified models and infill asymptotics [Choiruddin,

C. and Waagepetersen’20]

Specifically for λ : results valid for p > 1 [Ba and Coeurjolly’20]

Other alternatives : (incomplete)

Palm likelihood (for ρ) [Prokešová and Jensen’13], variational approach
[Baddeley and Dereudre’13] [C. and Møller’14], logisitc regression likelihoods
[Waagepetersen’07] [Baddeley, C., Rubak and Waageepetersen’14], . . .
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Standard models and methods

Computational aspects

To evaluate PLρ (in terms of β) or PLλ (in terms of β and ψ) we
have to discretize

∫
W
ρ(u)du or

∫
W
λ(u , x)du

Bermann-Turner approximation : [Baddeley and Turner’00]∫
W
ρ(u)du or

∫
W
λ(u , x)du≈

n+m∑
i=1

qiµ(ui )

where
µ(ui ) = ρ(ui ) or λ(ui , x)
n = # data points ; qi quadrature weights ;
m=dummy points ; m >> n

Then, with yi = q−1i 1(ui ∈ X)

PLρ or PLλ ≈
n+m∑
i=1

qi

{
yi log µ(ui ) − µ(ui )

}
R
= glm(...,family=quasipoisson)︸                                 ︷︷                                 ︸

spatstat package
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Standard models and methods

Logistic regression as a computational alternative

Definition of the contrast [Waagepetersen’07][Baddeley et al’14]

LR• =
∑

u∈x∩W

log
(

µ(u)
ν + µ(u)

)
−

∫
W
ν log

(
ν

ν + µ(u)

)
du

where µ(u) = ρ(u) or λ(u , x) when • = ρ or λ.

When ν is large, LR• ≈ PL•
Interest : if we discretize the integral using only dummy points
s.t. m = ν|W | ; with ui = data point (i = 1, . . . ,n) or dummy
point i = n + 1, . . . ,n +m

LRρ or LRλ ≈

n∑
i=1

log
(

µ(ui )
ν + µ(ui )

)
−

m∑
j=1

log
(

ν

ν + µ(uj+n )

)
R
= glm(...,family=binomial,offset=-log(nu))︸                                                   ︷︷                                                   ︸

spatstat package, ppm(...,method=’logi’)
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Standard models and methods

Selection criteria : How to select among models ?

Ml =
{
ρ(·;βl ) or λ(·, x;βl ) | βl =

{
β0, (βj )j∈Il

}
∈ Rpl

}
, l = 1, . . . , 2p .

where βl (and eventually ψ) is estimated using PLρ,l or PLλ,l

Criteria [Choiruddin, C. and Waagepetersen’20]

Composite Akaike’s information type criterion

CIC•,l = −2 P̂L•,l + 2p̂∗
l

where p̂∗
l

estimates p∗
l
= Tr

(
S−1Σ

)
, S = −E

(
PL(2)
•,l

)
Σ = Var

(
PL(1)
•,l

)
Composite Bayesian information criterion

CBIC•,l = −2 P̂L•,l + p̂
∗
l

log(n)

where n is the observed number of points.

Note that under the Poisson case, p∗
l
= pl .
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Standard models and methods

On the BCI dataset . . .

Estimation of ρ (using PLρ or LRρ) :

bei dataset : W = [0, 1000] × [0, 500] ; n ' 3000 locations of trees ;

93 spatial covariates (single and interaction terms) : some of them
are highly correlated and/or are little informative ;

Standard method combined with a naive selection procedure (e.g.
stepwise based on some criterion) :

very expensive from a computational point of view
(more than 10 hours using a forward/backward stepwise procedure
using a CBIC type criterion ;
some of the investigated models produced numerical errors ;
of course : all coefficients are , 0 ! Signs are incoherent with
expertise, . . .

⇒ make sense to investigate a simultaneous selection/estimation proce-
dure, especially if we assume sparsity.
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Regularization techniques
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Regularization techniques

References (Absolutely not exhaustive)

d = 1 :

Lasso Poisson : [Reynaud-Bouret’03] [Ivanoff, Picard and Rivoirard] (lasso and
group lasso - methodology and concentration inequalities)

Multivariate Hawkes point processes : [Hansen, Reynaud-Bouret and

Rivoirard’15] (concentration inequalities)

d > 1 :

Methodology for ρ : [Thurman, Fu, Guan and Zhu’15] (adaptive lasso , PLρ)

Methodology for λ : [Yue and Loh’15], [Daniel, Horrocks and Umphrey’18]

(adaptive lasso, enet for PLλ and LRλ)

For multivariate point patterns : GPP [Rajala, Murrell and Olhede’17],
LGCP [Choiruddin, Cueva-Pacheco, C. and Waagepetersen’20]

Contributions : Methodology and theoretical results for

several contrasts (including PL or LR), large class of PP,
convex/non-convex penalty functions, Dantzig selector, . . .
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Regularization techniques

Context and penalized criteria

Single observation of an SPP on (Wn )n≥1, Wn → R
d as n → ∞

Sparse model with a diverging number of parameters : we assume

β =
(
β>1 ,β

>
2

)>
=

(
β>1 , 0

>
)>

with β1 ∈ R
s and β2 ∈ R

pn−s and where
pn → ∞.

We define : β̂ = argmaxβQρ, or (β̂, ψ̂) = argmaxβ,ψQλ where

Q• = PL•− |Wn |

pn∑
j=1

πλn ,j (|βj |) or Q• = LR•− |Wn |

pn∑
j=1

πλn ,j (|βj |)

(for GPP we do not penalize ψ)

↪→ λn ,j ≥ 0 are regularization parameters

↪→ πλ(·) : penalty function
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Regularization techniques

Examples of convex and non-convex penalties

lasso or ridge : λn ,j = λn ,

πλ(θ) = λ|θ| or λθ2/2

elastic net : λn ,j = λn ,

πλ(θ) = λ(α|θ| + (1 − α) 12θ
2)

adaptive lasso πλn ,j (θ) = λn ,j |θ|
0

2

4

6

8

−4 −2 0 2 4
θ

π λ
(θ

)

penalty (a) lasso (b) ridge (c) enet (d) scad (e) mc+

SCAD penalty : γ > 2, πλ(θ) =


λθ if θ ≤ λ

γλθ− 1
2 (θ2+λ2)
γ−1 if λ ≤ θ ≤ γλ

λ2(γ2−1)
2(γ−1) if θ ≥ γλ,

MC+ : for any γ > 1, pλ(θ) =
{
λθ − θ2

2γ if θ ≤ γλ
1
2γλ

2 if λ ≤ θ ≤ γλ.
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Regularization techniques

Computational aspects

For exponential familty models : PLρ, PLλ, LRρ, LRλ are convex
functions of β or (β,ψ)

Hence, thanks to Bermann-Turner approximation, we can take
advantage of GLMs adapted procedures !

min (−Q•) = min

−PL• or − LR•︸             ︷︷             ︸+ penalty


= convex + convex/non-convex

R
= spatstat + glmnet / ncvreg
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Regularization techniques

How to tune the λn ,j ?

Standard procedure ([Zou et al] : λn ,j =
λ

|β̂j |γ
where β̂j is the PL• or

LR• estimate, γ = extra parameter often set to 1.

So the question is how to tune λ ?

Ideas from Bootstrapping/resampling techniques (see OSSP talk by
O. Cronnie)
Extend standard criterions : let CL• = PL• or LR•. Select λ
minimizing a criterions such as

1 CIC(λ) = −2ĈL(λ) + 2d̂ (λ)

2 CBIC(λ) = −2ĈL(λ) + d̂ (λ) log(n)

3 CERIC(λ) = −2ĈL(λ) + d̂ (λ) log
(

n
|Wn |λ

)
(Bayesian prior)

where d̂ (λ) is an estimate of d (λ) = Tr
(
S−1(λ)Σ(λ)

)
,

S(λ) = −E
(
PL•,l (λ)(2)

)
Σ(λ) = Var

(
PL(1)
•,l

(λ)
)
.

Under the Poisson case, d (λ) = # non-zero coefficients.
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Regularization techniques

What can we prove ? (well expected results !)

Let µn = EN (Wn ) =


∫
Wn

ρ(u)du∫
Wn

E(λ(u ,X))du
Asymptotic framework : s = sn , p = pn , µn → ∞
(includes infill and increasing domain asymptotics)
For simplicity, we focus on the adaptive lasso here ; let

an = max
j=1,...,sn

λn ,j , bn = min
j=sn+1,...,pn

λn ,j .

Theorem [Choiruddin, C. and Letué’18,’22] [Ba and C.’22]

Under some assumptions (such that it works . . .)

max
(
p4
n

µn
,
s2
np

3
n

µn

)
→ 0, an

√
snµn → 0, bn/

√
µn
p2
n
→ ∞.

Then, as n → ∞ and ∀φ ∈ Rsn \ {0} s.t. ‖φ‖ < ∞

P
(
β̂2 = 0

)
→ 1 and σ−1φ φ>S11(β̂1 − β1)

d
→ N (0, Is )

where σ2
φ = φ

>V11φ and where S11 and V11 are the sensitivity and
variance of the score . . .
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Regularization techniques

For other penalties

Possible ? ⇔ an
√
snµn → 0 and bn

√
µn/p2

n → ∞

Method an bn Possible ?

ridge λn max
j=1,...,sn

{|β0j |} 0 7

lasso λn λn 7

enet λn [(1 − α) max
j=1,...,sn

{|β0j |} + α] λnα 7

aLasso max
j=1,...,sn

{λn ,j } inf
j=sn+1,...,pn

{λn ,j } 3

aenet max
j=1,...,sn

{λn ,j
(
(1 − α)|β0j | + α

)
} α inf

j=sn+1,...,pn

{λn ,j } 3

SCAD 0* λn
* 3

MC+ 0* λn −
K

γ
√
µn

* 3

* if λn → 0 and λn
√
µn/p2

n → ∞.
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Regularization techniques

(Too) brief illustration for Inhom Strauss PP (γ = .5)

PLλ with adaptive lasso with
CERIC(λ)

W1 = [0, 250] × [0, 125],
W2 = 2W1 and W3 = 4W1

p1 = 39, p2 = 56 and p3 = 79
covariates

β = (β>1 , 0)>, β1 = b1 ∈ Rs with
s = 2 (first row), s = 5 (second
row) [the higher b the stronger
the signal !]

z1, z2 are generated using BCI
covariates

All FPRs are < 4%

0.4

0.8

1.2

1.6

W1 W2 W3

s
=

2

RMSE

0

25
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75

100
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2.0

2.5

W1 W2 W3

s
=

5
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0
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Signal b=0.25 b=0.5 b=1 b=1.5
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Other approaches/problems
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Other approaches/problems

Dantzig selector

Lasso for linear models :

Minimizing ‖Y −Xβ‖2 + λ‖β‖1

⇐⇒ Minimizing ‖Y −Xβ‖2 subj. to ‖β‖1 ≤ ν.

Another point of view by [Candès and Tao’04] :

⇐⇒ Minimizing ‖β‖1 subj. to ‖Y −Xβ‖∞ ≤ ν.

as Lasso, performs features selection ; can be efficiently implemented
using linear programming ;
[Candès and Tao’04] provided some oracle inequalities (in particular) for
‖β̂ − β‖2 ;
then compared to Lasso by e.g. [Bickel et al.’09], extended to GLM by
[James and Radchenko’09], [Dicker’10]
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Other approaches/problems

Dantzig selector for ρ (2) [Choiruddin, C. and Letué’20]

1 First substitute residuals (for a standard LM) by PL(1)
ρ

Minimizing

pn∑
j=1

|βj | subject to ‖PL(1)
ρ ‖∞ ≤ λn

2 + Adaptive version : let Λ = diag(λn ,j , j = 1, . . . , pn )

Minimizing ‖Λβ‖1 subject to ‖Λ−1PL(1)‖∞ ≤ 1.

3 + Linearization of the constraint (to use of linear programming)

Minimizing ‖Λβ‖1 subject to
∥∥∥∥Λ−1 (

PL(1)
ρ (β̃) + (β̃ − β)PL(2)

ρ (β̃)
) ∥∥∥∥
∞
≤ 1.

[Choiruddin, C. and Letué’20] for details on the methodology, results, . . . : lots of
similarities with adaptive lasso.
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Other approaches/problems

Log-convolution model for ρ

In the context of eye-movement data, [Cuevas-Pacheco,C. and Descary’20]

proposed the model
log ρ(u) = β ∗ z (u)

where β : WRd , z (u) is a saliency map (deterministic prediction
map), ∗= convolution product

Taking advantage of the Fourier basis φκ, κ ∈ Z
d

log ρ(u) ≈ βκ0Zκ0 +
K∑
i=1

{
2βRκiR[Zκiφκi (s)] − 2βIκiI[Zκiφκi (s)]

}
ZR,I
κ βR,Iκ real or imaginary Fourier coefficient of z (u) and β(u).

Close to a log-linear model in the spectral domain ; since K can be
large ⇒ regularization must be investigated.
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Other approaches/problems

Illustration

(d) Nonparametric estimation (e) Convolution model (Lasso) (f) Convolution model (Ridge)

(a) Raw image and data (b) Parametric method (c) Semiparametric method (Baddeley et al)

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

200

400

600

800

0

200

400

600

800

Method/model AUC
Parametric estimate : Log-linear model ρ(u) = β × z (u) 0.785

Semiparam. est. ρ(u) = f (z (u)) [Baddeley, Chang, Song and Turner’12] 0.774
Nonparametric estimate (kernel density estimate) 0.869

Log-convolution model (adaptive lasso) 0.900
Log-convolution model (adaptive ridge) 0.918
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Conclusion/perspectives

Table of Contents

1 Examples of (high-dimensional) spatial point patterns

2 Standard models and methods

3 Regularization techniques

4 Other approaches/problems

5 Conclusion/perspectives

JF Coeurjolly Feature selection for s.p.p. 35 / 37



Conclusion/perspectives

Brief conclusion

Regularization techniques for SPP is now a mature topic

main methodologies ensue from links between PL/LR with GLMs ;
treatment is now quite common to estimate either ρ(u) or λ(u , x)

A few perspectives

Finite-sample size results : requires concentration inequalities
(quite complex)

Understand more criteria to tune the regularization parameters
(CERIC(λ),. . .)

Extension to spatio-temporal PP (with an adapted penalty)

squared-root lasso, group lasso, fused lasso

Distribution of estimates ; post-selection inference
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Conclusion/perspectives

Thank you for your attention
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