Asymptotic behavior of cumulative processes and application to Hawkes processes

Laetitia Colombani

IMT

30th August 2022, Journées MAS, Rouen

Cumulative processes

- 1. Cumulative processes
 - Definition and examples
 - Long-time behavior

- 2. Application to Hawkes Processes
 - Definition of Hawkes Processes and construction
 - Link with cumulative processes and results

1. Cumulative processes

- Definition and examples
- Long-time behavior
- 2. Application to Hawkes Processes

Renewal process

Renewal process

Let $(\tau_i)_i$ i.i.d random variables in \mathbb{R}^+ . Let S_n the cumuled sum: $S_n = \sum_{i=1}^n \tau_i$ and M_t the counting process:

$$M_t = \sup_{n\in\mathbb{N}} \left\{ S_n \leq t \right\}.$$

 M_t is called the *renewal process* of $(\tau_i)_i$.

Renewal process

Renewal process

Let $(\tau_i)_i$ i.i.d random variables in \mathbb{R}^+ . Let S_n the cumuled sum: $S_n = \sum_{i=1}^n \tau_i$ and M_t the counting process:

$$M_t = \sup_{n \in \mathbb{N}} \left\{ S_n \le t \right\}$$

 M_t is called the *renewal process* of $(\tau_i)_i$.

Example

If $\tau_i \sim \mathcal{E}(\lambda)$, M_t is a Poisson process of parameter λ .

3/19

Simple definition of cumulative process

Definition

Let $(\tau_i, W_i)_i$ i.i.d. couples of random variables in $\mathbb{R}^+ \times \mathbb{R}$. Let M_t the counting process associated with $(\tau_i)_i$:

$$M_t = \sup_{n\in\mathbb{N}}\left\{\sum_{i=1}^n \tau_i \leq t\right\}.$$

The *cumulative process* associated with $(\tau_i, W_i)_i$ is

$$Z_t = \sum_{i=1}^{M_t} W_i$$

Laetitia Colombani	(IMT)
--------------------	-------

4/19

イロト 不得下 イヨト イヨト

Complete definition

Definition

- Z_t a real valued processes such that:
 - $Z_0 = 0$
 - ▶ there exists a renewal process S_n , s.t. for any n, $(Z_{S_n+t} Z_{S_n})$ is independent of S_0, \ldots, S_n and $(Z_s)_{s < S_n}$
 - ▶ the distribution of $(Z_{S_n+t} Z_{S_n})$ is independent of *n*.

Complete definition

Definition

- Z_t a real valued processes such that:
 - $\blacktriangleright Z_0 = 0$
 - ▶ there exists a renewal process S_n , s.t. for any n, $(Z_{S_n+t} Z_{S_n})$ is independent of S_0, \ldots, S_n and $(Z_s)_{s < S_n}$
 - ▶ the distribution of $(Z_{S_n+t} Z_{S_n})$ is independent of *n*.

Remark

We can write

$$Z_t = W_0(t) + W_1 + ... + W_{M_t} + r_t,$$

where M_t is defined by $M_t = \sup\{n \ge 0, S_n \le t\}$; and $\tau_n = S_n - S_{n-1}$ for $n \ge 1$. Thus, $(\tau_k, W_k)_k$ are i.i.d.

Examples

Example 1

Poisson process, and renewal process in general.

¹Raphaël Lefevere, Mauro Mariani, and Lorenzo Zambotti. "Large Deviations for Renewal Processes". In: Stochastic Processes and their Applications 121.10 (2011), pp. 2243–2271.

Laetitia Colombani (IMT)

Cumulative processes

Examples

Example 1

Poisson process, and renewal process in general.

Example 2

If $W_i = F(\tau_i)$, where F is a deterministic function¹.

¹Raphaël Lefevere, Mauro Mariani, and Lorenzo Zambotti. "Large Deviations for Renewal Processes". In: Stochastic Processes and their Applications 121.10 (2011), pp. 2243–2271.

Laetitia Colombani (IMT)

Cumulative processes

Examples

Example 1

Poisson process, and renewal process in general.

Example 2

If $W_i = F(\tau_i)$, where F is a deterministic function¹.

Example 3

Hawkes processes in a specific context (see later).

¹Raphaël Lefevere, Mauro Mariani, and Lorenzo Zambotti. "Large Deviations for Renewal Processes". In: Stochastic Processes and their Applications 121.10 (2011), pp. 2243–2271.

Laetitia Colombani (IMT)

Cumulative processes

1. Cumulative processes

- Definition and examples
- Long-time behavior

2. Application to Hawkes Processes

Long-time behavior

Law of large numbers, Central Limit Theorem²

Law of Large Numbers

If $\mathbb{E}[|W|]$ and $\mathbb{E}[\tau]$ are finite, and under conditions on the law of r_t , we have

$$\frac{Z_t}{t} \xrightarrow[t \to \infty]{a.s.} \frac{\mathbb{E}[W]}{\mathbb{E}[\tau]}.$$

²Soeren Asmussen. Applied Probability and Queues. 2nd ed. Stochastic Modelling and Applied Probability. Vork: Springer Verlag, 2003 Laetitia Colombani (IMT) Cumulative processes 7/19 30th August 2022

Long-time behavior

Law of large numbers, Central Limit Theorem²

Law of Large Numbers

If $\mathbb{E}[|W|]$ and $\mathbb{E}[\tau]$ are finite, and under conditions on the law of r_t , we have

$$\frac{Z_t}{t} \xrightarrow[t \to \infty]{a.s.} \frac{\mathbb{E}[W]}{\mathbb{E}[\tau]}.$$

Central Limit Theorem

If $Var(W) < \infty$ and $Var(\tau) < \infty$, then

$$\frac{\left(Z_t - t\frac{\mathbb{E}[W]}{\mathbb{E}[\tau]}\right)}{\sqrt{t}} \xrightarrow[t \to \infty]{} \mathcal{N}\left(0, \sigma^2\right) \text{ where } \sigma^2 = \frac{1}{\mathbb{E}(\tau)} \operatorname{Var}\left(W - \frac{\mathbb{E}[W]}{\mathbb{E}[\tau]}\tau\right)$$

²Soeren Asmussen. Applied Probability and Queues. 2nd ed. Stochastic Modelling and Applied Probability. Carlanan Marlan 2002 Laetitia Colombani (IMT) Cumulative processes 7/19 30th August 2022

Large deviations inequalities

We denote $\theta_0 = \sup\{\theta, \mathbb{E}(e^{\theta W}) < \infty\}$ and $m = \mathbb{E}(W_1)/\mathbb{E}(\tau_1)$.

Large deviations inequalities [Cattiaux, C., Costa]

For all a > 0

$$\limsup_{t\to+\infty} \frac{1}{t} \ln \mathbb{P}\left(\frac{1}{t}\sum_{i=1}^{M_t} W_i \ge m+a\right) \le -\min\left[\inf_{z\ge m+(a/2)} J(z) \ , \ \theta_0 a/4\right],$$

and

$$\limsup_{t \to +\infty} \frac{1}{t} \ln \mathbb{P}\left(\frac{1}{t} \sum_{i=1}^{M_t} W_i < m-a\right) \leq -\min\left[\inf_{z \leq m-(a/2)} J(z) , \theta_0 a/4\right].$$

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

3

Large deviations inequalities

Here Λ^* is the Cramer transform for $(a, b) \in \mathbb{R}^2$, and J the rate function associated for $z \in \mathbb{R}^+$

$$\Lambda^*(a,b) = \sup_{x,y} \left\{ ax + by - \ln \left(\mathbb{E} \left[e^{x\tau + yW} \right] \right) \right\} \quad \text{and} \quad J(z) = \inf_{\beta > 0} \ \beta \Lambda^* \left(\frac{1}{\beta}, \frac{z}{\beta} \right).$$

Large deviations principle

Large deviation principle [Cattiaux, C., Costa]

If $\theta_0 = +\infty$ (in particular, if W is bounded) then $\frac{1}{t} \sum_{i=1}^{M_t} W_i$ satisfies a full LDP with a good rate function \tilde{J} , i.e.

$$\begin{array}{ll} \text{for any closed set } \mathcal{C} \in \mathbb{R}, \qquad \limsup_{t \to \infty} \frac{1}{t} \ \ln \mathbb{P} \left(\frac{1}{t} \sum_{i=1}^{M_t} W_i \in \mathcal{C} \right) \\ \leq - \inf_{m \in \mathcal{C}} \tilde{J}(m), \\ \text{for any open set } \mathcal{O} \in \mathbb{R}, \qquad \limsup_{t \to \infty} \frac{1}{t} \ \ln \mathbb{P} \left(\frac{1}{t} \sum_{i=1}^{M_t} W_i \in \mathcal{O} \right) \\ \leq - \inf_{m \in \mathcal{O}} \tilde{J}(m). \end{array}$$

30th August 2022

Large deviations principle

Rate functions

For W^n a well-chosen reduction of W, we introduce the Cramer transform for $(a, b) \in \mathbb{R}^2$, and the rate function J^n associated for $z \in \mathbb{R}^+$

$$\Lambda_n^*(a,b) = \sup_{x,y} \left\{ ax + by - \ln \mathbb{E} \left(e^{x\tau + yW^n} \right) \right\} \quad \text{and} \quad J^n(z) = \inf_{\beta > 0} \ \beta \Lambda_n^* \left(\frac{1}{\beta}, \frac{z}{\beta} \right).$$

We define

$$\widetilde{J}(z) = \sup_{\delta>0} \liminf_{n\to\infty} \inf_{|y-z|<\delta} J^n(y).$$

Laetitia Colombar	ni (IMT)
-------------------	----------

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

11/19

3

1. Cumulative processes

2. Application to Hawkes Processes

- Definition of Hawkes Processes and construction
- Link with cumulative processes and results

Definition

Definition

Let $h: (0, +\infty) \to \mathbb{R}$ a signed measurable function. Let $\lambda > 0$. A Hawkes process N^h is a self-influencing point process whose intensity is given at each time $t \ge 0$ by:

$$\Lambda^h(t) = \left(\lambda + \sum_{i \ge 1} h(t - U_i)\right)^+ = \left(\lambda + \int_{(-\infty,t)} h(t - u) N^h(du)\right)^+$$

where U_i are the jumps of N^h .

Definition

Definition

Let $h: (0, +\infty) \to \mathbb{R}$ a signed measurable function. Let $\lambda > 0$. A Hawkes process N^h is a self-influencing point process whose intensity is given at each time $t \ge 0$ by:

$$\Lambda^{h}(t) = \left(\lambda + \sum_{i \geq 1} h(t - U_{i})\right)^{+} = \left(\lambda + \int_{(-\infty,t)} h(t - u) N^{h}(du)\right)^{+}$$

where U_i are the jumps of N^h .

Applications

- Earthquakes and aftershocks
- Firing of neurons
 Laetitia Colombani (IMT)

Social network
 Finance

Cumulative processes

Construction (example)

Example

$$\lambda = 1$$

 $h = \mathbb{1}_{[0,0.5]} - \mathbb{1}_{(0.5,1]}$

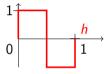


Figure: function h

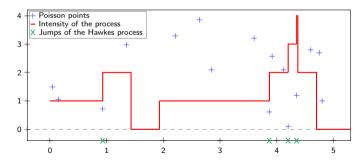
Laetitia	Colombani	(IMT)
----------	-----------	-------

Construction (example)

Example

$$\lambda = 1$$

 $h = \mathbb{1}_{[0,0.5]} - \mathbb{1}_{(0.5,1]}$



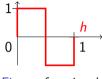


Figure: function h

Figure: N^h and its intensity in function of the time

$$\Lambda^h(t) = \left(\lambda + \sum_{i \ge 1} h(t - U_i)
ight)^+$$

Laetitia Colombani (IMT)

Cumulative processes

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 30th August 2022

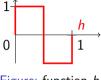
13/19

Construction (example)

Example

$$\lambda = 1$$

 $h = \mathbb{1}_{[0,0.5]} - \mathbb{1}_{(0.5,1]}$



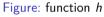
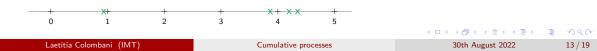


Figure: N^h and its intensity in function of the time



Construction from an SDE

Proposition

Let Q a $(\mathcal{F}_t)_{t\geq 0}$ -Poisson point process on $(0, +\infty)^2$ with unit intensity. Let $\lambda > 0$ and $h: (0, \infty) \to \mathbb{R}$ a signed reproduction function with $\|h^+\|_1 < 1$. Then, there exists a unique strong solution of:

$$\begin{cases} N^{h} = \int \delta_{u} \mathbb{1}_{\theta \leq \Lambda^{h}(u)} Q(du, d\theta) \\ \Lambda^{h}(u) = \left(\lambda + \int_{(-\infty, u)} h(u - s) N^{h}(du)\right)^{+}, \ u > 0, \end{cases}$$

and this solution is a Hawkes process.

Laetitia	Co	lombani	(IMT)
----------	----	---------	-------

3

14/19

イロト 不得 トイヨト イヨト

1. Cumulative processes

2. Application to Hawkes Processes

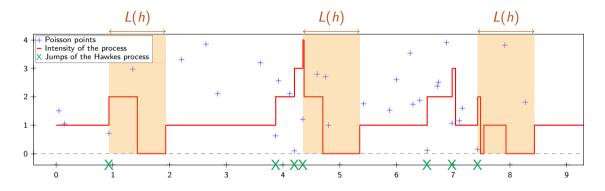
- Definition of Hawkes Processes and construction
- Link with cumulative processes and results

Link between Hawkes process and cumulative process

Assumption: h has a compact support included in [0, L(h)]. Then, the Hawkes process is a cumulative process.

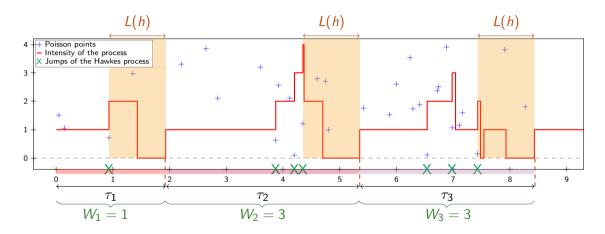
Intensity

$$\Lambda^h(t) = \left(\lambda + \sum_{i \ge 1} h(t - U_i)
ight)^+$$
, where U_i are the jumps of N^h .
If $t > U_i + L(h)$ for each $U_i < t$, then $\Lambda^h(t) = \lambda$.



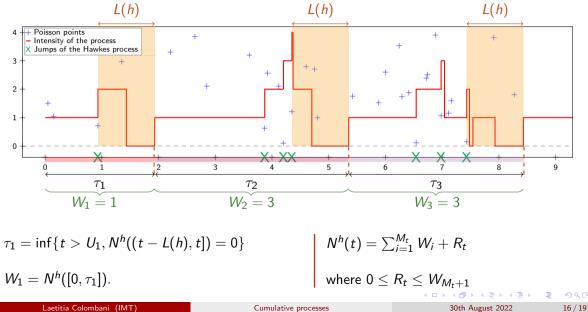
< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 30th August 2022

16 / 19



< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 30th August 2022

16 / 19



Results : law of large numbers and limit central theorem

Law of large numbers and Limit Central Theorem for Hawkes process [Cattiaux, C., Costa]

Let *h* be a signed function, with a support includes in [0, L(h)]. Then we have:

$$\frac{N_t^h}{t} \xrightarrow[t \to \infty]{a.s.} \frac{\mathbb{E}[W_1]}{\mathbb{E}[\tau_1]}$$

and

$$\frac{1}{\sqrt{t}} \left(N_t^h - \frac{\mathbb{E}[W_1]}{\mathbb{E}[\tau_1]} t \right) \xrightarrow[t \to \infty]{law} \mathcal{N}(0, \sigma^2),$$
where $\sigma^2 = \frac{1}{\mathbb{E}(\tau_1)} Var\left(W_1 - \frac{\mathbb{E}[W_1]}{\mathbb{E}[\tau_1]} \tau_1 \right).$

17 / 19

イロト 不得下 イヨト イヨト

Results: large deviations

Let θ_0 such that $\forall \theta < \theta_0, \mathbb{E}(e^{\theta |W|}) < \infty$.

Large deviations inequalities [Cattiaux, C., Costa]

▶ If
$$\theta_0 = \infty$$
, then N_t^h/t satisfies a LDP.

Results: large deviations

Let θ_0 such that $\forall \theta < \theta_0, \mathbb{E}(e^{\theta|W|}) < \infty$.

Large deviations inequalities [Cattiaux, C., Costa]

▶ If $\theta_0 < +\infty$, we have for all a > 0

$$\limsup_{t \to \infty} \frac{1}{t} \ln \mathbb{P}\left(\frac{N_t^h}{t} > m + a\right) \le -\min\left[\inf_{z \ge m + a/2} J(z), \theta_0 a/4\right],$$
$$\limsup_{t \to \infty} \frac{1}{t} \ln \mathbb{P}\left(\frac{N_t^h}{t} < m - a\right) \le -\min\left[\inf_{z \le m - a/2} J(z), \theta_0 a/4\right],$$

where we define

$$\Lambda^*(a,b) = \sup_{x,y} \left\{ ax + by - \ln \left(\mathbb{E} \left[e^{x\tau + yW} \right] \right) \right\} \quad \text{and} \quad J(z) = \inf_{\beta > 0} \ \beta \Lambda^* \left(\frac{1}{\beta}, \frac{z}{\beta} \right).$$

Thank you

- Patrick Cattiaux, Laetitia Colombani, and Manon Costa. Large Deviation Principles for Cumulative Processes and Applications. 2021. arXiv: 2109.07800
- Patrick Cattiaux, Laetitia Colombani, and Manon Costa. "Limit Theorems for Hawkes Processes Including Inhibition". In: Stochastic Processes and their Applications (2022)

3

Idea of the proof

• Simplify the problem : $W \in \{1, \ldots, N\}$

Idea of the proof

- Simplify the problem : $W \in \{1, \dots, N\}$
- Focus on the empirical measure

$$\mu_t = \frac{1}{t} \int_0^t \delta_{(s-S_{M_s},S_{M_s+1}-s,W_{M_s+1})} ds$$

- 1. Build an interesting space of measures and determine a first rate function.
- 2. Prove the upper bound for compact spaces, by constructing the rate function; and extend it to closed spaces.
- 3. Prove the lower bound.

Idea of the proof

- Simplify the problem : $W \in \{1, \dots, N\}$
- Focus on the empirical measure

$$\mu_t = \frac{1}{t} \int_0^t \delta_{(s-S_{M_s},S_{M_s+1}-s,W_{M_s+1})} ds$$

- 1. Build an interesting space of measures and determine a first rate function.
- Prove the upper bound for compact spaces, by constructing the rate function; and extend it to closed spaces.
- 3. Prove the lower bound.
- Use a contraction principle to deduce a LDP on Z_t/t in the simplified case.
- Study the behavior of the leftover between the approximation and the "true" process.
- Complete the work with a study of rate function