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Functional observation

A realization of a (typically smooth) random object
that takes values in an abstract function space*

1. From Alexandre Aue



Example 1 : Berkeley Growth Study

Ages are not equally spaced
Uncertainty of about 3mm
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Data can be considered as 10 functional
observations Height,(t),i =1,...,10.

Height measurement of 10 girls at 31 ages

Values reflect a smooth variation in height
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Then, we can display the acceleration curves

D?Height =

to highlight subtle features in this data.

d’Height

dt?

Tuddenham & Snyder(1954)
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» Strong positive acceleration = pubertal growth
» Bump at at around 6-years old = mid-spurt
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In this case, the functional representation allowed us
» to use derivatives which carry important information
» to give an explicit role to the ages
Both points are at least very difficult if we want to use multivariate data analysis.



Example 2 : Tecator Infratec Food and Feed Analyzer
aim Predict the moisture, fat and protein contents of finely chopped
pure meat avoiding (expensive and destructive) clinical analysis.

data p spectrometric responses associated to a finite number of
wavelengths using the Near Infrared Transmission (NIT) principle.

pb p > the number of samples
model Noiseless smooth curves defined over a range of wavelengths.
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Example 3 : fda script

aim Analyze variability on digital signature.
data Smooth X-Y coordinates of 20 replications represented by 1401
coordinate values.
» adjusted to a common length that corresponds to 2.3 seconds
» important features in each script are aligned
pb Curve registration, feature alignment.
model Noiseless smooth curves defined over [0, 1]?
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Example 4 : Canadian weather

Mean Temperature (deg C)
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aim Study the variability between different weather stations in Canada.

data Mean temperature measure weekly at 35 locations (grouped in 4
climate zones : Atlantic, Pacific, Continental, Arctic)



Functional Data Analysis (FDA)

FDA refers to the statistical analysis of data samples consisting of ran-
dom functions or surfaces, where each function is viewed as one sample
element. Miiller (2011).

When? » When the sample curves is highly regular. Then variables
are highly correlated which may produce numerical problems
and mask relevant effects of the analysis.

» When regular curves are sampled with noise. Data should
be denoised, preferably in coordination with the analysis
technique.
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Some technical tools
FD representation



Functional variable and functional dataset

» Random function : X = {X(t),t € T}

» Realization x = {x(t),t € T} of X (for example F = C[0, 1] or
F = L([0,1]))

> Xi(t),...,X,(t) are iid = Functional random sample

» In practice : serial correlation and spatial dependence are usual.



How to represent FD 7

» In practice we observe do not observe x = {x(t),t € T} but
x={x(t;),j=1,...,N}, N < oo

problem How to represent FD from discrete (finite dimensional) sampling
discrete (possibly noisy) sampling at {t,,k =1,..., N}.
Interpolation If the observations are assumed to be noiseless
Smoothing Smoothing, to remove noise. We can use curve estimation theory,
that includes :
» Basis expansion
» Smoothing penalization
» Local regression methods
P kernel regression
P local polynomial regression
All these variants share the bias-variance trade-off and the fact that
they require to choose some smoothing parameter.



Basis expansion

» We observe y; that contains the target x(t;) with some noise ¢;
yi = x(t;) + €

» Chose a basis {¢«(t)}«, popular choices are Fourier, B-splines, Wavelets, ...
» Given your basis, compute the coefficients ¢ :

K
X(t) = Z Ck(bk(t)
k=1
» The number of elements K is to be chosen !

» If K > N makes no sense (K = N achieves perfect fit)
» lIdeal : K << N : interpretations are easier and computations faster.



Smoothing penalties

» \We observe y that contains the target x with some noise ¢, i.e. y = x + €.
Let x = ¢c.

» We can estimate c using OLS but we want a smooth solution

» Penalize good fit if it produces an oscillating curve :

» Choose a rich basis {¢x(t)}x and a smoothing penalty
> Estimate to solve

min [y — el + A [ [Lx(t)de

» [x(t) measures the lack of smoothness (roughness) of x, some popular
choices are

» Harmonic acceleration : Lx = w?2Dx + D3x
» Curvature Lx(t) = D?x(t)dt

» )\ is a tunning parameter that increasingly penalizes roughness of the
solution (it can be tunned by cross validation)
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Summarize FD

» We dispose with a functional sample Xi, ..., X,.
» The mean population p is estimated by the sample mean :
_ 1.
/:\Ln = Xn = - ZXI

Nzt
» The covariance operator [ is estimated by I,

n 1.7 _
rn(h):—Z<X,-—Xn,h>(X,-—X,,)
nizs

If F = L5([0,1]) we have
» Mean : x(t) = 1327 x(t)

n

» Covariance : o(s, t) = cov(x(s), x(t)) = 1 X7, (xi(s) — x(s))(xi(t) —



Example (Canadian weather data)

Smoothing B-splines basis and second-derivative penalties (K choosen by CV)
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Functional PCA

Karhunen-Loéve transform of X

X(t) = u(t) + X GA(t)
jz1
» f;(t) form an orthonormal basis of eigen-functions (principal factors) and are
solutions of ['f; = \;f;
» (; are zero-mean uncorrelated random variables (principal components) with

variance \j, A\ > Ao, ..,



Functional PCA

» In practice o(t,s) is unknown and so they are f; and ;.

» Solving the eigen-analysis problem needs (in general) to approximate each
curve x; and eigenfunction f; in a basis of functions {¢x(t)}«

xi(t) = kz; Yikdi(t), fi(t) = ; bjkdi(t).

» With this approximation, C; and ); are solutions of

1 1/2 10/ \A/A1/2
mA/ W' WAY2b; = \;b;
with
» by is the vector (bik,. by, )
» W is matrix of centered coefficients ;x
» A is the matrix of inner products between basis functions



Example (Canadian weather)
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» From the scree plot we choose the first 3 harmonics (as in MDA)



Example (Canadian weather)

PCA function 1 (Percentage of variability 8.5 ) PCA f ion 2 (F ge of variability 8.5 ) PCA function 3 (Percentage of variability 2)
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» Plots X(t) &2/ Axex(t) for k =1,2,3
» Also derivatives can be used for interpretation



Clustering functional data

» Aim : to group curves into homogeneous groups

» Different approaches :
> Feature extraction + multivariate clustering
» Use distances between functions : Antoinadis, Brossat, Cugliari and Poggi
(2013) Clustering functional data with waveletes, IJMRA
» Model-based clustering : J.Jacques and C.Preda (2014), Functional data
clustering : a survey, Advances in Data Analysis and Classification, 8[3],
231-255
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Regression analysis



Functional linear regression

» Aim : to describe predictive relationships

» Different scenarios
Yi=a+x0+¢

» Scalar response with functional predictor
» Functional response with scalar predictor
» Functional response with functional predictor



Scalar response model
Use the {t;}; from the sampling grid : y; = a + > Bixi(t;)
» With increasingly finer grids, we have (in the limit)

yi=a+ /B(t)x,-(t)dt + €

» As we have infinitely many covariates, estimate 5 by minimizing squared
error makes no sense (identification problem).
» Solution : regularization using restricted basis functions

5(6) = 3 buun(t) = B(6) = /(1

where 1, can be the basis used for curves smoothing or another one.

xi(t) = Z_ﬁ: Yikdk(t) & x(t) = CP'(t)

where C is the n x¥x K coefficient matrix.



Then
y=a+ /B(t)x,-(t)dt —a+ / CO(t)W(t)bdt + ¢ = Clyob + ¢

with Jy o = [ ®(t)V(t) dt

With the notation Z = [1,CJ, 4] and £ = («, by, .. ., bk,), the model becomes
y=2Z{+¢
and the OLS estimate of ¢ is given by (if Kz < K),

£=(Z2)'zy



Example (Canadian weather)

Aim : predict the log annual precipitation from the temperature profile.

Regression function 1
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Functional Time Series



FD as slices of a continuous process [Bosa, (1990)]
The prediction problem
» Suppose one observes a square integrable continuous-time stochastic process
X = (X(t),t € R) over the interval [0, T], T > 0;
» We want to predict X all over the segment [T, T +6],5 > 0
» Divide the interval into n subintervals of equal size §.

» Consider the functional-valued discrete time stochastic process
Z = (Zk,k € N), where N = {1,2,...}, defined by

Zi(t) = X(t + (k — 1))
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If X contents a §—seasonal component, Z is particularly fruitful.



Prediction of functional time series

Let (Zx, k € Z) be a stationary sequence of H-valued r.v. Given 73, ...

want to predict the future value of Z,;.
» A predictor of Z,,1 using Z1,25,...,2Z, is

Zn+1 - ]E[ZnJrl’va anlu ) Zl]

Autoregressive Hilbertian process of order 1
The ARH(1) centred process states that at each k,

Zy = p(Zk—1) + €k

, Z, we

(1)

where p is a compact linear operator and {€, }xez is an H—valued strong white

noise.

Under mild conditions, equation (1) has a unique solution which is a strictly

stationary process with innovation {e }xez. [Bosa, (1991)]

When Z is a zero-mean ARH(1) process. the best predictor of Z..1 given



Overview

IDEA Similar past causes produce similar future consequences.

» We need an appropriate distance between current and past situations.
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» What is a segment ?
» How do | represent segments?

» What does similar mean?
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Approximation and details

» In practice, we don’t dispose of the whole trajectory but only with a
(possibly noisy) sampling at 27 points, for some integer J.
» Each approximated segment Z; ;(t) is broken up into two terms :

» a smooth approximation S;(t) (lower fregs)
> a set of details Dj(t) (higher freqgs)

2jo—1 J—12/—-1
Z ok¢J0= +Z Z kwjk
Jj=jo k=0
Si(t) Dj(t)

» The parameter jo controls the separation. We set jo = 0.

J—12/-1

Zy(t) = codoo(t) + D Y dixthjw(t)

Jj=0 k=0



A two step prediction algorithm

Step | : Dissimilarity between segments

Search the past for segments that are similar to the last one.
For two observed series of length 27 say Z,, and Z; we set for each scale j > jy :

o1 1/2
dist;(Zm, Z1) = (Z(d""’ a7 )

k=0

Then, we aggregate over the scales taking into account the number of
coefficients at each scale

J—1
D(Zm, Z)) = Y 272distj(Zm, Z))

J=jo



A two step prediction algorithm

Step 2 : Kernel regression

Obtain the predlction of the scale coefficients at the finest resolution
=01 ={cj ("+1 k=0,1,...,27 — 1} for Z,,1

K (D(Z,,,Zm)>

hn

Zn 1 K( Znan)>

—n+1 Z W n—m+17 Wm,n =

Finally, the prediction of Z,,; can be written

21—

Z CS": 1)¢J k(



Let us predict Saturday 10 September 2005

We use Antoniadis et al., (2006) prediction method with corrections to cope with
non stationarity.

» Use the last observed segment (n = 9/Sept/2005) to look for similar
segments in past.

» Construct a similarity index SimilIndex (using a kernel).

» Prediction can be written as

— n—1
Load,;1(t) = Z Simillndex,, , X Load1(t)
m=1

» First difference correction of the approximation part.

» Use of groups to anticipate calendar transitions.
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date SimilIndex
2004-09-10 0.455
2003-09-05 0.141
2002-09-06 0.083
2004-09-03 0.070
2003-09-19 0.068
2000-09-08 0.058
2000-09-15 0.019
1999-09-10 0.017
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FDA Overview

| 4
>
>

Data samples consisting of random functions or surfaces.
Smoothness hypothesis on the underlying stochastic processes.
FDA provides a statistical approach to the analysis of repeatedly observed
stochastic processes or data generated by such processes.
FDA approaches and models are essentially nonparametric :
P series expansions, penalized splines, or local polynomial smoothing,
» functional principal component analysis
FDA differs from time series :
» sampling designs may be sparse and irregularly observed
» milder hypothesis about the underlying process
FDA differs from MDA :
» FD are inherently infinite-dimensional
» smoothness often is a central assumption.
» MDA is permutation invariant
FDA differs from smoothing :
» smoothing typically implies one non-random object perturbed by noisy



Books

» D. Bosq (2000) Linear Processes in Function Spaces ISBN :978-0-387-95052-4,
283 p.

» J. Ramsay, G. Hooker & Spencer, G. (2009) Functional Data Analysis with R and
MATLAB, I1SBN :978-0-387-98185-7, 207 p.

» J. Ramsay & B.W. Silverman (2005) Functional Data Analysis (2nd ed.),
ISBN :978-0-387-40080-8, 430 p.

» F. Ferraty & P. Vieu (2006) Nonparametric Functional Data Analysis, ISBN :
978-0-387-30369-7, 268 p.

» Horvath, L. & Kokoszka, P. (2013) Inference for Functional Data with
Applications ISBN :978-1-4614-3655-3, 422p.



Software

R libraries
(https://cran.csail.mit.edu/web/views/FunctionalData.html)

» fds, H.-L. Shang & R.J. Hyndman
» fda, J.O. Ramsay, H. Wickham, S. Graves & G. Hooker
» fda.usc, M. Febrero & M. Oviedo.
» rainbow, H.-L. Shang & R.J. Hyndman
Python

» scikit-fda Grupo de Aprendizaje Automatico - Universidad Auténoma de
Madrid Revision

Matlab
» fda J.O. Ramsay, H. Wickham, S. Graves & G. Hooker (2013)
» PACE H.-G. Miiller, et al. (2012)


https://cran.csail.mit.edu/web/views/FunctionalData.html
http://cran.r-project.org/web/packages/fds/index.html
http://cran.r-project.org/web/packages/fda/index.html
http://cran.r-project.org/web/packages/fda.usc/index.html
http://cran.r-project.org/web/packages/rainbow/index.html
https://fda.readthedocs.io/en/latest/
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/
http://www.stat.ucdavis.edu/PACE/
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