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Functional observation

A realization of a (typically smooth) random object
that takes values in an abstract function space 1

1. From Alexandre Aue



Example 1 : Berkeley Growth Study Tuddenham & Snyder(1954)

▶ Height measurement of 10 girls at 31 ages
▶ Ages are not equally spaced
▶ Uncertainty of about 3mm
▶ Values reflect a smooth variation in height
▶ Data can be considered as 10 functional

observations Heighti(t), i = 1, . . . , 10.

Then, we can display the acceleration curves

D2Height = d2Height
dt2

to highlight subtle features in this data.



▶ Strong positive acceleration ⇒ pubertal growth
▶ Bump at at around 6-years old ⇒ mid-spurt

In this case, the functional representation allowed us
▶ to use derivatives which carry important information
▶ to give an explicit role to the ages

Both points are at least very difficult if we want to use multivariate data analysis.



Example 2 : Tecator Infratec Food and Feed Analyzer
aim Predict the moisture, fat and protein contents of finely chopped

pure meat avoiding (expensive and destructive) clinical analysis.
data p spectrometric responses associated to a finite number of

wavelengths using the Near Infrared Transmission (NIT) principle.
pb p ≫ the number of samples

model Noiseless smooth curves defined over a range of wavelengths.



Example 3 : fda script
aim Analyze variability on digital signature.

data Smooth X-Y coordinates of 20 replications represented by 1401
coordinate values.
▶ adjusted to a common length that corresponds to 2.3 seconds
▶ important features in each script are aligned

pb Curve registration, feature alignment.
model Noiseless smooth curves defined over [0, 1]2



Example 4 : Canadian weather

aim Study the variability between different weather stations in Canada.
data Mean temperature measure weekly at 35 locations (grouped in 4

climate zones : Atlantic, Pacific, Continental, Arctic)



Functional Data Analysis (FDA)

fda refers to the statistical analysis of data samples consisting of ran-
dom functions or surfaces, where each function is viewed as one sample
element. Müller (2011).

When ? ▶ When the sample curves is highly regular. Then variables
are highly correlated which may produce numerical problems
and mask relevant effects of the analysis.

▶ When regular curves are sampled with noise. Data should
be denoised, preferably in coordination with the analysis
technique.
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Functional variable and functional dataset

▶ Random function : X = {X (t), t ∈ T}

▶ Realization x = {x(t), t ∈ T} of X (for example F = C [0, 1] or
F = L2([0, 1]))

▶ X1(t), . . . ,Xn(t) are iid ⇒ Functional random sample

▶ In practice : serial correlation and spatial dependence are usual.



How to represent FD ?
▶ In practice we observe do not observe x = {x(t), t ∈ T} but

x = {x(tj), j = 1, . . . ,N}, N < ∞

problem How to represent FD from discrete (finite dimensional) sampling
discrete (possibly noisy) sampling at {tk , k = 1, . . . ,N}.

Interpolation If the observations are assumed to be noiseless
Smoothing Smoothing, to remove noise. We can use curve estimation theory,

that includes :
▶ Basis expansion
▶ Smoothing penalization
▶ Local regression methods

▶ kernel regression
▶ local polynomial regression

All these variants share the bias-variance trade-off and the fact that
they require to choose some smoothing parameter.



Basis expansion

▶ We observe yi that contains the target x(ti) with some noise ϵi

yi = x(ti) + ϵi

▶ Chose a basis {ϕk(t)}k , popular choices are Fourier, B-splines, Wavelets, ...
▶ Given your basis, compute the coefficients ck :

x(t) =
K∑

k=1
ckϕk(t)

▶ The number of elements K is to be chosen !
▶ If K > N makes no sense (K = N achieves perfect fit)
▶ Ideal : K << N : interpretations are easier and computations faster.



Smoothing penalties
▶ We observe y that contains the target x with some noise ϵ, i.e. y = x + ϵ.

Let x = ϕc.
▶ We can estimate c using OLS but we want a smooth solution
▶ Penalize good fit if it produces an oscillating curve :

▶ Choose a rich basis {ϕk(t)}k and a smoothing penalty
▶ Estimate to solve

min ∥y − ϕc∥ + λ

∫
[Lx(t)]2dt

▶ Lx(t) measures the lack of smoothness (roughness) of x , some popular
choices are
▶ Harmonic acceleration : Lx = ω2Dx + D3x
▶ Curvature Lx(t) = D2x(t)dt

▶ λ is a tunning parameter that increasingly penalizes roughness of the
solution (it can be tunned by cross validation)



Plan

1 Some technical tools
FD representation

2 Descriptive analysis
Summarize FD
Functional PCA
Clustering

3 Regression analysis

4 Functional Time Series

5 References and resources



Summarize FD
▶ We dispose with a functional sample X1, . . . ,Xn.
▶ The mean population µ is estimated by the sample mean :

µ̂n = X̄n = 1
n

n∑
i=1

Xi

▶ The covariance operator Γ is estimated by Γn

Γ̂n(h) = 1
n

n∑
i=1

< Xi − X̄n, h > (Xi − X̄n)

If F = L2([0, 1]) we have
▶ Mean : x̄(t) = 1

n
∑n

i=1 xi(t)
▶ Covariance : σ(s, t) = cov(x(s), x(t)) = 1

n
∑n

i=1(xi(s) − x̄(s))(xi(t) − x̄(t))



Example (Canadian weather data)
Smoothing B-splines basis and second-derivative penalties (K choosen by CV)



Functional PCA
Karhunen-Loève transform of X

X (t) = µ(t) +
∑
j≥1

Cj fj(t)

▶ fj(t) form an orthonormal basis of eigen-functions (principal factors) and are
solutions of Γfj = λj fj

▶ Cj are zero-mean uncorrelated random variables (principal components) with
variance λj , λ1 ≥ λ2, . . .,

Cj =< X − µ, fj >



Functional PCA
▶ In practice σ(t, s) is unknown and so they are fj and λj .
▶ Solving the eigen-analysis problem needs (in general) to approximate each

curve xi and eigenfunction fj in a basis of functions {ϕk(t)}k

xi(t) =
K∑

k=1
γikϕk(t), fj(t) =

K∑
k=1

bjkϕk(t).

▶ With this approximation, Cj and λj are solutions of

1
n − 1A1/2W ′WA1/2bj = λjbj

with
▶ bk is the vector (b1k,...bKk )
▶ W is matrix of centered coefficients γik
▶ A is the matrix of inner products between basis functions



Example (Canadian weather)

▶ From the scree plot we choose the first 3 harmonics (as in MDA)



Example (Canadian weather)

▶ Plots x̄(t) ± 2
√
λkek(t) for k = 1, 2, 3

▶ Also derivatives can be used for interpretation



Clustering functional data

▶ Aim : to group curves into homogeneous groups
▶ Different approaches :

▶ Feature extraction + multivariate clustering
▶ Use distances between functions : Antoinadis, Brossat, Cugliari and Poggi

(2013) Clustering functional data with waveletes, IJMRA
▶ Model-based clustering : J.Jacques and C.Preda (2014), Functional data

clustering : a survey, Advances in Data Analysis and Classification, 8[3],
231-255
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Functional linear regression

▶ Aim : to describe predictive relationships
▶ Different scenarios

yi = α + xiβ + ϵi

▶ Scalar response with functional predictor
▶ Functional response with scalar predictor
▶ Functional response with functional predictor



Scalar response model
Use the {tj}j from the sampling grid : yi = α + ∑

βjxi(tj)
▶ With increasingly finer grids, we have (in the limit)

yi = α +
∫
β(t)xi(t)dt + ϵi

▶ As we have infinitely many covariates, estimate β by minimizing squared
error makes no sense (identification problem).

▶ Solution : regularization using restricted basis functions

β(t) =
Kβ∑

k=1
bkψk(t) ⇔ β(t) = ψ′(t)b

where ψk can be the basis used for curves smoothing or another one.

xi(t) =
Kβ∑

k=1
γikϕk(t) ⇔ x(t) = CΦ′(t)

where C is the n × K coefficient matrix.



Then

y = α +
∫
β̂(t)xi(t)dt = α +

∫
CΦ(t)Ψ(t)′bdt + ϵ = CJΨ,Φb + ϵ

with JΨ,Φ =
∫

Φ(t)Ψ(t)′dt

With the notation Z = [1,CJΨ,Φ] and ξ = (α, b1, . . . , bKβ
), the model becomes

y = Zξ + ε

and the OLS estimate of ξ is given by (if Kβ < K ),

ξ̂ = (Z′Z)−1Z′y



Example (Canadian weather)
Aim : predict the log annual precipitation from the temperature profile.
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FD as slices of a continuous process [Bosq, (1990)]

The prediction problem
▶ Suppose one observes a square integrable continuous-time stochastic process

X = (X (t), t ∈ R) over the interval [0,T ], T > 0 ;
▶ We want to predict X all over the segment [T ,T + δ], δ > 0
▶ Divide the interval into n subintervals of equal size δ.
▶ Consider the functional-valued discrete time stochastic process

Z = (Zk , k ∈ N), where N = {1, 2, . . .}, defined by
Xt

t
1δ 2δ 3δ 4δ 5δ 6δ0 T + δ

Z1(t) Z2(t) Z5(t)

Z3(t) Z4(t) Z6(t)

Zk(t) = X (t + (k − 1)δ)

k ∈ N ∀t ∈ [0, δ)

If X contents a δ−seasonal component, Z is particularly fruitful.



Prediction of functional time series
Let (Zk , k ∈ Z) be a stationary sequence of H-valued r.v. Given Z1, . . . ,Zn we
want to predict the future value of Zn+1.
▶ A predictor of Zn+1 using Z1,Z2, . . . ,Zn is

Z̃n+1 = E[Zn+1|Zn,Zn−1, . . . ,Z1].

Autoregressive Hilbertian process of order 1
The arh(1) centred process states that at each k ,

Zk = ρ(Zk−1) + ϵk (1)

where ρ is a compact linear operator and {ϵk}k∈Z is an H−valued strong white
noise.
Under mild conditions, equation (1) has a unique solution which is a strictly
stationary process with innovation {ϵk}k∈Z. [Bosq, (1991)]

When Z is a zero-mean arh(1) process, the best predictor of Zn+1 given
{Z1, . . . ,Zn−1} is :

Z̃n+1 = ρ(Zn).



Overview

idea Similar past causes produce similar future consequences.
▶ We need an appropriate distance between current and past situations.

▶ What is a segment ?
▶ How do I represent segments ?
▶ What does similar mean ?



Approximation and details

▶ In practice, we don’t dispose of the whole trajectory but only with a
(possibly noisy) sampling at 2J points, for some integer J .

▶ Each approximated segment Zi ,J(t) is broken up into two terms :
▶ a smooth approximation Si(t) (lower freqs)
▶ a set of details Di(t) (higher freqs)

Zi ,J(t) =
2j0 −1∑
k=0

c (i)
j0,kϕj0,k(t)︸ ︷︷ ︸
Si (t)

+
J−1∑
j=j0

2j −1∑
k=0

d (i)
j,kψj,k(t)

︸ ︷︷ ︸
Di (t)

▶ The parameter j0 controls the separation. We set j0 = 0.

z̃J(t) = c0ϕ0,0(t) +
J−1∑
j=0

2j −1∑
k=0

dj,kψj,k(t).



A two step prediction algorithm

Step I : Dissimilarity between segments
Search the past for segments that are similar to the last one.
For two observed series of length 2J say Zm and Zl we set for each scale j ≥ j0 :

distj(Zm,Zl) =
2j −1∑

k=0
(d (m)

j,k − d (l)
j,k )2

1/2

Then, we aggregate over the scales taking into account the number of
coefficients at each scale

D(Zm,Zl) =
J−1∑
j=j0

2−j/2distj(Zm,Zl)



A two step prediction algorithm

Step 2 : Kernel regression
Obtain the prediction of the scale coefficients at the finest resolution
Ξn+1 = {c (n+1)

J,k : k = 0, 1, . . . , 2J − 1} for Zn+1

Ξ̂n+1 =
n−1∑
m=1

wm,nΞm+1, wm,n =
K

(
D(Zn,Zm)

hn

)
∑n−1

m=1 K
(

D(Zn,Zm)
hn

)
Finally, the prediction of Zn+1 can be written

Ẑn+1(t) =
2J −1∑
k=0

ĉ (n+1)
J,k ϕJ,k(t)



Let us predict Saturday 10 September 2005

We use Antoniadis et al., (2006) prediction method with corrections to cope with
non stationarity.
▶ Use the last observed segment (n = 9/Sept/2005) to look for similar

segments in past.
▶ Construct a similarity index SimilIndex (using a kernel).
▶ Prediction can be written as

L̂oadn+1(t) =
n−1∑
m=1

SimilIndexm,n × Loadm+1(t)

▶ First difference correction of the approximation part.
▶ Use of groups to anticipate calendar transitions.



SimilIndex
date SimilIndex

2004-09-10 0.455
2003-09-05 0.141
2002-09-06 0.083
2004-09-03 0.070
2003-09-19 0.068
2000-09-08 0.058
2000-09-15 0.019
1999-09-10 0.017
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FDA Overview
▶ Data samples consisting of random functions or surfaces.
▶ Smoothness hypothesis on the underlying stochastic processes.
▶ FDA provides a statistical approach to the analysis of repeatedly observed

stochastic processes or data generated by such processes.
▶ FDA approaches and models are essentially nonparametric :

▶ series expansions, penalized splines, or local polynomial smoothing,
▶ functional principal component analysis

▶ FDA differs from time series :
▶ sampling designs may be sparse and irregularly observed
▶ milder hypothesis about the underlying process

▶ FDA differs from MDA :
▶ FD are inherently infinite-dimensional
▶ smoothness often is a central assumption.
▶ MDA is permutation invariant

▶ FDA differs from smoothing :
▶ smoothing typically implies one non-random object perturbed by noisy

observations
1. Müller, 2010



Books
▶ D. Bosq (2000) Linear Processes in Function Spaces ISBN :978-0-387-95052-4,

283 p.

▶ J. Ramsay, G. Hooker & Spencer, G. (2009) Functional Data Analysis with R and
MATLAB, ISBN :978-0-387-98185-7, 207 p.

▶ J. Ramsay & B.W. Silverman (2005) Functional Data Analysis (2nd ed.),
ISBN :978-0-387-40080-8, 430 p.

▶ F. Ferraty & P. Vieu (2006) Nonparametric Functional Data Analysis, ISBN :
978-0-387-30369-7, 268 p.

▶ Horváth, L. & Kokoszka, P. (2013) Inference for Functional Data with
Applications ISBN :978-1-4614-3655-3, 422p.



Software
R libraries
(https://cran.csail.mit.edu/web/views/FunctionalData.html)
▶ fds, H.-L. Shang & R.J. Hyndman
▶ fda, J.O. Ramsay, H. Wickham, S. Graves & G. Hooker
▶ fda.usc, M. Febrero & M. Oviedo.
▶ rainbow, H.-L. Shang & R.J. Hyndman

Python
▶ scikit-fda Grupo de Aprendizaje Automático - Universidad Autónoma de

Madrid Revision
Matlab
▶ fda J.O. Ramsay, H. Wickham, S. Graves & G. Hooker (2013)
▶ PACE H.-G. Müller, et al. (2012)

https://cran.csail.mit.edu/web/views/FunctionalData.html
http://cran.r-project.org/web/packages/fds/index.html
http://cran.r-project.org/web/packages/fda/index.html
http://cran.r-project.org/web/packages/fda.usc/index.html
http://cran.r-project.org/web/packages/rainbow/index.html
https://fda.readthedocs.io/en/latest/
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/
http://www.stat.ucdavis.edu/PACE/
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