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Model

For i = 1, . . . ,N and t ∈ [0, 1],

Yi (t) = f (t) + εi (t). (1)

We observe a discretization of this process: for j = 1, . . . , n,

Yij = f (tj) + εij , (2)

Goal: estimate f

I estimation: projection onto a functional basis

I control of this estimation: confidence band
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Illustration

n = 300, N=50
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Assumptions

I The function f belongs to a space of dimension L∗

f ∈ Span((BL∗
` )1≤`≤L∗) and is denoted f L

∗
:

f L
∗
(t) =

L∗∑
`=1

µL
∗
` BL∗

` (t)

I (BL∗
` )1≤` is an orthonormal basis

I The sequence εi is functional and belongs to
Span((BLε

` )1≤`≤Lε). There exists a sequence of coefficients ci`
such that

εij =
Lε∑
`=1

ci`B
Lε

` (tj)

I The noise is Gaussian: for all i = 1, . . . ,N and ` = 1, . . . , Lε,

ci` ∼iid N (0, σ2)
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When L∗ is known

For a fixed t ∈ [0, 1], the estimator of f L
∗
(t) is defined by:

µ̂L∗ = (BT
L∗BL∗)

−1BT
L∗Y

f̂ L
∗
(t) =

L∗∑
`=1

µ̂L
∗
` BL∗

` (t)

with BT
L∗ = (BL∗

` (tj))1≤`≤L∗,1≤j≤n.
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When L∗ is known

Proposition The distributions of the estimator µ̂L∗ and of the
estimated function are

µ̂L∗ ∼ N
(
µL∗ , σ2ΣL,Lε

B

)
f̂ L
∗
(t)− f L

∗
(t) ∼ N

(
0, σ2B(t)ΣL∗,Lε

B B(t)T
)

where

ΣL∗,Lε

B = (BT
L∗BL∗)

−1BT
L∗ΣLεBL∗(BT

L∗BL∗)
−1

ΣLε = Diag(ΣLε , . . . ,ΣLε)

ΣLε = BLεBT
Lε .
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When L∗ is known

For a fixed confidence level α, we are looking for dL∗ such that

P
(
∀t ∈ [0, 1], f̂ L

∗
(t)− dL∗(t) ≤ f L

∗
(t) ≤ f̂ L

∗
(t) + dL∗(t)

)
= 1−α

Constant band

P

(
max
t∈[0,1]

|f̂ L∗(t)− f L
∗
(t)| ≥ dL∗

)
= α
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When L∗ is known
Kac-Rice formulae

I If X = {X (t), t ∈ [0, 1]} is a centered Gaussian process with
variance σ2, C1([0, 1]) almost surely

I Let τ(t)2 = Var(X ′(t))
σ2 .

Then

P(∃t ∈ [0, 1] : X (t) ≥ d) ≤ Φ

(
−d
σ

)
+
‖τ‖1
2π

exp

{
− d2

2σ2

}
.

Looking for d such that

Φ

(
−d
σ

)
+
‖τ‖1
2π

exp

{
− d2

2σ2

}
= α.

Not constant band
Extension using Liebl and Reimherr1 when the band is adaptive

1Fast and Fair Simultaneous Confidence Bands for Functional Parameters,
arXiv 2022
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When L∗ is known
Experiments: confidence band for f L

∗

Setting
Fourier basis, of level L∗ = 11,
µ` ∼ U({−5,−4,−3,−2, 2, 3, 4, 5}) for all ` ∈ {1, . . . , L∗}

Results

α / (n,N) (50, 100) (500, 1000)

0.05 0.947 0.948
0.1 0.914 0.905
0.2 0.842 0.812

Table: Repetitions over 1000 iterations for the constant band

Conclusion
Good coverage, asymptotics
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When L∗ is unknown: for a fixed L
Let L. We denote

µL,L
∗

` =< f L
∗
,BL

` > for ` ∈ {1, . . . , L}

f L,L
∗
(t) =

L∑
`=1

BL
` (t)µL,L

∗

`

But we are not able to observe the functions on infinite set of
points:

mL,L∗ = (BT
L BL)−1BT

L BL∗µ
L∗

f L,L
∗
(t) =

L∑
`=1

BL
` (t)mL,L∗

`

When n→ +∞,

mL,L∗ → µL,L
∗

and f L,L
∗
(t)→ f L,L

∗
(t) for all t
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When L∗ is unknown: for a fixed L

Let L.
For a fixed t ∈ [0, 1], the estimator of f L,L

∗
(t) is defined by:

m̂L,L∗ = (BT
L BL)−1BT

L y

f̂
L,L∗

(t) =
L∑
`=1

m̂L,L∗

` BL
` (t)

f̂
L,L∗

(t)− f L,L
∗
(t) ∼ N

(
0, σ2B(t)ΣL,Lε

B B(t)T
)

f̂
L,L∗

(t)− f L
∗
(t) ∼ N

(
bL,L

∗
(t), σ2B(t)ΣL,Lε

B B(t)T
)

where
bL,L

∗
(t) = f L,L

∗
(t)− f L

∗
(t).
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When L∗ is unknown: for a fixed L

Constant band

P

(
max
t∈[0,1]

|f̂ L,L
∗
(t)− f L,L

∗
(t)| ≥ dL,L∗

)
= α

Looking for dL,L∗ such that

Φ

(
−dL,L∗

σ

)
+
‖τL‖1

2π
exp

{
−(dL,L∗)2

2σ2

}
= α.
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When L∗ is unknown: for a fixed L
Experiments: Confidence band for f L,L

∗

Setting
Fourier basis, of level L∗ = 11,
µ` ∼ U({−5,−4,−3,−2, 2, 3, 4, 5}) for all ` ∈ {1, . . . , L∗}
N = 100, n = 50

Results

α / L 3 5 7 9 11 13 15

0.05 0.997 0.983 0.974 0.964 0.947 0.949 0.955
0.1 0.991 0.970 0.950 0.934 0.914 0.920 0.901
0.2 0.970 0.942 0.904 0.871 0.842 0.806 0.832

Table: Repetition over 1000 iterations, for f L,L
∗
.

Conclusion
Very conservative when L 6= L∗ for f L,L

∗
.
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When L∗ is unknown: for a fixed L
Experiments: Confidence band for f L,L

∗

0 1 2 3 4 5 6

-1
5

-1
0

-5
0

5
10

Time

D
at
a

Conclusion
The estimation and the band are meaningless!
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When L∗ is unknown: for a fixed L
Confidence band for f L

∗

We want to control

f̂
L,L∗

(t)− f L
∗
(t) =f̂

L,L∗
(t)− f L,L

∗
(t) + f L,L

∗
(t)

+ f̂ L
∗
(t)− f̂ L

∗
(t) + f̂

L,L∗
(t)− f̂

L,L∗
(t)− fL∗(t)

P

(
max
t∈[0,1]

|f̂ L,L
∗
(t)− f L,L

∗
(t)| ≥ dL,L∗

1

)
= α

P

(
max
t∈[0,1]

|f̂ L,L
∗
(t)− f̂ L

∗
(t)− f L,L

∗
(t) + f L

∗
(t)| ≥ dL,L∗

2

)
= α

b̂L,L
∗
(t) = f̂

L,L∗
(t)− f̂ L

∗
(t)
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When L∗ is unknown: for a fixed L
Confidence band for f L

∗

P
(
∀t ∈ [0, 1], f̂

L,L∗
(t)− b̂L,L

∗
(t)− f L

∗
(t)

/∈ [−dL,L∗

1 + dL,L∗

2 , dL,L∗

1 − dL,L∗

2 ]
)

= 1− (1− α)2

I Terms in L∗ may be approximated by Lmax large
I Band centered in f̂ L

∗

I Remark: comparison with a confidence band at level Lmax

leads to the same width, but many more parameters!
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When L∗ is unknown: selecting the best L

Criterion: looking for the smaller band

argmin
L
{dL,L∗

1 − dL,L∗

2 }

α / L 3 5 7 9 11 13 15

0.05 2.66 2.23 1.67 0.89 0.51 0.52 0.51
0.1 2.47 2.07 1.54 0.83 0.48 0.48 0.48
0.2 2.27 1.90 1.41 0.75 0.44 0.44 0.44

Table: Repetition over 1000 iterations, for f L,L
∗

debiased.

Model selection: penalize by the dimension to promote models of
smaller dimension
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When L∗ is unknown: selecting the best L

Classical tools: estimation and error approximation in `2 norm2

In our case: norm max

Ongoing work: adapting Lacour et al.3 to our case, with
estimation of the bias (and variance associated to this estimation)

2E. Brunel’s HdR, 2013
3Estimator selection: a new method with applications to kernel density

estimation, Sankhya 1, 2017
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Conclusion and perspective

I Functional model on an orthonomal basis

I If the dimension is known: every is easy

I If we use a fixed dimension: theoretically, we can control
everything; but in practice, can be meaningless

I Selection of the dimension to construct the smallest
meaningful confidence band

I Work on the theoretical result for the model selection

I Try on benchmark and real dataset
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