Sélection de modèle pour la construction de bandes de confiance sur la fonction moyenne

Emilie Devijver et Adeline Samson, emilie.devijver@univ-grenoble-alpes.fr

Outline

Model

- ▶ When the level *L*^{*} is known
- ▶ When the level L* is unknown: approximation by a fixed L
- When the level L* is unknown: selecting the best L

Model

For
$$i=1,\ldots,N$$
 and $t\in [0,1],$
 $Y_i(t)=f(t)+arepsilon_i(t).$ (1)

We observe a discretization of this process: for $j = 1, \ldots, n$,

$$Y_{ij} = f(t_j) + \varepsilon_{ij}, \qquad (2)$$

Goal: estimate *f*

- estimation: projection onto a functional basis
- control of this estimation: confidence band

Illustration

n = 300, N=50

Time

<□> < □> < □> < □> < ⊇> < ⊇> < ⊇> < ⊇ > < ○<</td>4/21

Assumptions

The function f belongs to a space of dimension L^{*} f ∈ Span((B^{L*}_ℓ)_{1≤ℓ≤L^{*}}) and is denoted f^{L*}:

$$f^{L^*}(t) = \sum_{\ell=1}^{L^*} \mu_\ell^{L^*} B_\ell^{L^*}(t)$$

• $(B_{\ell}^{L^*})_{1 \leq \ell}$ is an orthonormal basis

► The sequence ε_i is functional and belongs to $Span((B_{\ell}^{L^{\varepsilon}})_{1 \leq \ell \leq L^{\varepsilon}})$. There exists a sequence of coefficients $c_{i\ell}$ such that

$$arepsilon_{ij} = \sum_{\ell=1}^{L^*} c_{i\ell} B_{\ell}^{L^{arepsilon}}(t_j)$$

• The noise is Gaussian: for all i = 1, ..., N and $\ell = 1, ..., L^{\varepsilon}$,

$$c_{i\ell} \sim_{iid} \mathcal{N}(0, \sigma^2)$$

5/21

When L^* is known

For a fixed $t \in [0, 1]$, the estimator of $f^{L^*}(t)$ is defined by:

$$\hat{\mu}^{L^*} = (\mathsf{B}_{L^*}^{\mathsf{T}}\mathsf{B}_{L^*})^{-1}\mathsf{B}_{L^*}^{\mathsf{T}}\mathsf{Y}$$
 $\hat{f}^{L^*}(t) = \sum_{\ell=1}^{L^*} \hat{\mu}_{\ell}^{L^*} B_{\ell}^{L^*}(t)$

with $\mathsf{B}_{L^*}^{\mathcal{T}} = (B_\ell^{L^*}(t_j))_{1 \leq \ell \leq L^*, 1 \leq j \leq n}$.

When L^* is known

Proposition The distributions of the estimator $\hat{\mu}^{L^*}$ and of the estimated function are

$$\hat{\boldsymbol{\mu}}^{L^*} \sim \mathcal{N}\left(\boldsymbol{\mu}^{L^*}, \sigma^2 \boldsymbol{\Sigma}_B^{L,L^{\varepsilon}}\right) \hat{f}^{L^*}(t) - f^{L^*}(t) \sim \mathcal{N}\left(0, \sigma^2 B(t) \boldsymbol{\Sigma}_B^{L^*,L^{\varepsilon}} B(t)^T\right)$$

where

$$\begin{split} \boldsymbol{\Sigma}_{B}^{L^*,L^{\varepsilon}} &= (\mathsf{B}_{L^*}^{\mathsf{T}}\mathsf{B}_{L^*})^{-1}\mathsf{B}_{L^*}^{\mathsf{T}}\boldsymbol{\Sigma}_{L^{\varepsilon}}\mathsf{B}_{L^*}(\mathsf{B}_{L^*}^{\mathsf{T}}\mathsf{B}_{L^*})^{-1}\\ \boldsymbol{\Sigma}_{L^{\varepsilon}} &= Diag(\boldsymbol{\Sigma}_{L^{\varepsilon}},\ldots,\boldsymbol{\Sigma}_{L^{\varepsilon}})\\ \boldsymbol{\Sigma}_{L^{\varepsilon}} &= \mathsf{B}_{L^{\varepsilon}}\mathsf{B}_{L^{\varepsilon}}^{\mathsf{T}}. \end{split}$$

For a fixed confidence level α , we are looking for d^{L^*} such that

$$P\left(orall t \in [0,1], \ \hat{f}^{L^*}(t) - d^{L^*}(t) \le f^{L^*}(t) \le \hat{f}^{L^*}(t) + d^{L^*}(t)
ight) = 1 - lpha$$

Constant band

$$P\left(\max_{t\in [0,1]} |\widehat{f}^{L^*}(t)-f^{L^*}(t)|\geq d^{L^*}
ight)=lpha$$

When L^* is known

Kac-Rice formulae

If X = {X(t), t ∈ [0, 1]} is a centered Gaussian process with variance σ², C¹([0, 1]) almost surely

• Let
$$\tau(t)^2 = \frac{Var(X'(t))}{\sigma^2}$$

Then

$$\mathbb{P}(\exists t \in [0,1]: X(t) \geq d) \leq \Phi\left(\frac{-d}{\sigma}\right) + \frac{\|\tau\|_1}{2\pi} \exp\left\{-\frac{d^2}{2\sigma^2}\right\}.$$

Looking for d such that

$$\Phi\left(\frac{-d}{\sigma}\right) + \frac{\|\tau\|_1}{2\pi} \exp\left\{-\frac{d^2}{2\sigma^2}\right\} = \alpha.$$

Not constant band

Extension using Liebl and Reimherr¹ when the band is adaptive

 When L^* is known

Experiments: confidence band for f^{L^*}

Setting

Fourier basis, of level $L^* = 11$, $\mu_{\ell} \sim \mathcal{U}(\{-5, -4, -3, -2, 2, 3, 4, 5\})$ for all $\ell \in \{1, \dots, L^*\}$

Results

lpha / (n,N)	(50, 100)	(500, 1000)
0.05	0.947	0.948
0.1	0.914	0.905
0.2	0.842	0.812

Table: Repetitions over 1000 iterations for the constant band

Conclusion Good coverage, asymptotics

When L^* is unknown: for a fixed LLet L. We denote

$$\mu_{\ell}^{L,L^*} = \langle f^{L^*}, B_{\ell}^L \rangle \text{ for } \ell \in \{1, \dots, L\}$$
 $f^{L,L^*}(t) = \sum_{\ell=1}^{L} B_{\ell}^L(t) \mu_{\ell}^{L,L^*}$

When L^* is unknown: for a fixed LLet L. We denote

$$egin{aligned} \mu_\ell^{L,L^*} = &< f^{L^*}, B_\ell^L > \ ext{for} \ \ell \in \{1,\ldots,L\} \ f^{L,L^*}(t) = \sum_{\ell=1}^L B_\ell^L(t) \mu_\ell^{L,L^*} \end{aligned}$$

But we are not able to observe the functions on infinite set of points:

$$\mathsf{m}^{L,L^*} = (\mathsf{B}_L^T\mathsf{B}_L)^{-1}\mathsf{B}_L^T\mathsf{B}_{L^*}\mu^{L^*}$$

 $\underline{f}^{L,L^*}(t) = \sum_{\ell=1}^L B_\ell^L(t)m_\ell^{L,L^*}$

When L^* is unknown: for a fixed LLet L. We denote

$$\mu_{\ell}^{L,L^*} = < f^{L^*}, B_{\ell}^L > \text{ for } \ell \in \{1, \dots, L\}$$
 $f^{L,L^*}(t) = \sum_{\ell=1}^L B_{\ell}^L(t) \mu_{\ell}^{L,L^*}$

But we are not able to observe the functions on infinite set of points:

$$\mathsf{m}^{L,L^*} = (\mathsf{B}_L^T\mathsf{B}_L)^{-1}\mathsf{B}_L^T\mathsf{B}_{L^*}\mu^{L^*}$$
$$\underline{f}^{L,L^*}(t) = \sum_{\ell=1}^L B_\ell^L(t)m_\ell^{L,L^*}$$

When $n \to +\infty$,

$$\mathsf{m}^{L,L^*} o \mu^{L,L^*}$$
 and $\underline{f}^{L,L^*}(t) o f^{L,L^*}(t)$ for all t

When L^* is unknown: for a fixed L

Let L. For a fixed $t \in [0, 1]$, the estimator of $\underline{f}^{L,L^*}(t)$ is defined by:

$$\hat{m}^{L,L^*} = (\mathsf{B}_L^T\mathsf{B}_L)^{-1}\mathsf{B}_L^T\mathsf{y}$$
 $\hat{\underline{f}}^{L,L^*}(t) = \sum_{\ell=1}^L \hat{m}_\ell^{L,L^*} B_\ell^L(t)$

When L^* is unknown: for a fixed L

Let *L*. For a fixed $t \in [0, 1]$, the estimator of $\underline{f}^{L,L^*}(t)$ is defined by:

$$\hat{m}^{L,L^*} = (\mathsf{B}_L^T\mathsf{B}_L)^{-1}\mathsf{B}_L^T\mathsf{y}$$
 $\hat{f}^{L,L^*}(t) = \sum_{\ell=1}^L \hat{m}_\ell^{L,L^*}B_\ell^L(t)$

$$\begin{split} & \frac{\hat{f}^{L,L^*}(t) - \underline{f}^{L,L^*}(t) \sim \mathcal{N}\left(0, \sigma^2 B(t) \Sigma_B^{L,L^{\varepsilon}} B(t)^T\right) \\ & \frac{\hat{f}^{L,L^*}(t) - f^{L^*}(t) \sim \mathcal{N}\left(b^{L,L^*}(t), \sigma^2 B(t) \Sigma_B^{L,L^{\varepsilon}} B(t)^T\right) \end{split}$$

where

$$b^{L,L^*}(t) = \underline{f}^{L,L^*}(t) - f^{L^*}(t).$$

When L^* is unknown: for a fixed L

Constant band

$$P\left(\max_{t\in[0,1]}|\hat{\underline{f}}^{L,L^*}(t)-\underline{f}^{L,L^*}(t)|\geq d^{L,L^*}
ight)=lpha$$

Looking for d^{L,L^*} such that

$$\Phi\left(\frac{-d^{L,L^*}}{\sigma}\right) + \frac{\|\tau_L\|_1}{2\pi} \exp\left\{-\frac{(d^{L,L^*})^2}{2\sigma^2}\right\} = \alpha.$$

When L^* is unknown: for a fixed LExperiments: Confidence band for \underline{f}^{L,L^*}

Setting

Fourier basis, of level $L^* = 11$, $\mu_{\ell} \sim \mathcal{U}(\{-5, -4, -3, -2, 2, 3, 4, 5\})$ for all $\ell \in \{1, \dots, L^*\}$ N = 100, n = 50

Results

α / L	3	5	7	9	11	13	15
0.05	0.997	0.983	0.974	0.964	0.947	0.949	0.955
0.1	0.991	0.970	0.950	0.934	0.914	0.920	0.901
0.2	0.970	0.942	0.904	0.871	0.842	0.806	0.832

Table: Repetition over 1000 iterations, for \underline{f}^{L,L^*} .

Conclusion

Very conservative when $L \neq L^*$ for \underline{f}^{L,L^*} .

When L^* is unknown: for a fixed *L* Experiments: Confidence band for \underline{f}^{L,L^*}

Conclusion

The estimation and the band are meaningless!

We want to control

$$rac{\hat{f}^{L,L^*}(t)-f^{L^*}(t)=\hat{f}^{L,L^*}(t)-\underline{f}^{L,L^*}(t)+\underline{f}^{L,L^*}(t)\ +\hat{f}^{L^*}(t)-\hat{f}^{L^*}(t)+\hat{f}^{L,L^*}(t)-\hat{f}^{L,L^*}(t)-f_{L^*}(t)$$

We want to control

$$rac{\hat{f}^{L,L^{*}}(t)-f^{L^{*}}(t)=\hat{f}^{L,L^{*}}(t)-\underline{f}^{L,L^{*}}(t)+\underline{f}^{L,L^{*}}(t)\ +\hat{f}^{L^{*}}(t)-\hat{f}^{L^{*}}(t)+\hat{f}^{L,L^{*}}(t)-\hat{f}^{L,L^{*}}(t)-f_{L^{*}}(t)$$

$$P\left(\max_{t\in[0,1]}|\hat{\underline{f}}^{L,L^*}(t)-\underline{f}^{L,L^*}(t)|\geq d_1^{L,L^*}\right)=\alpha$$

We want to control

$$rac{\hat{f}^{L,L^{*}}(t)-f^{L^{*}}(t)=\hat{f}^{L,L^{*}}(t)-\underline{f}^{L,L^{*}}(t)+\underline{f}^{L,L^{*}}(t)\ +\hat{f}^{L^{*}}(t)-\hat{f}^{L^{*}}(t)+\hat{f}^{L,L^{*}}(t)-\hat{f}^{L,L^{*}}(t)-f_{L^{*}}(t)$$

$$P\left(\max_{t\in [0,1]}|\widehat{\underline{f}}^{L,L^*}(t)-\underline{f}^{L,L^*}(t)|\geq d_1^{L,L^*}
ight)=lpha$$

$$P\left(\max_{t\in[0,1]}|\hat{f}^{L,L^*}(t)-\hat{f}^{L^*}(t)-\underline{f}^{L,L^*}(t)+f^{L^*}(t)|\geq d_2^{L,L^*}\right)=\alpha$$

We want to control

$$\frac{\hat{f}^{L,L^*}(t) - f^{L^*}(t) = \hat{f}^{L,L^*}(t) - \underline{f}^{L,L^*}(t) + \underline{f}^{L,L^*}(t) \\ + \hat{f}^{L^*}(t) - \hat{f}^{L^*}(t) + \underline{\hat{f}}^{L,L^*}(t) - \underline{\hat{f}}^{L,L^*}(t) - f_{L^*}(t)$$

$$P\left(\max_{t\in [0,1]}|\widehat{f}^{L,L^*}(t)-\underline{f}^{L,L^*}(t)|\geq d_1^{L,L^*}
ight)=lpha$$

$$P\left(\max_{t\in[0,1]}|\hat{f}^{L,L^*}(t)-\hat{f}^{L^*}(t)-\underline{f}^{L,L^*}(t)+f^{L^*}(t)|\geq d_2^{L,L^*}\right)=\alpha$$
$$\hat{b}^{L,L^*}(t)=\hat{f}^{L,L^*}(t)-\hat{f}^{L^*}(t)$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (* 16 / 21) 16 / 21

$$\begin{split} \mathsf{P}\left(\forall t \in [0,1], \underline{\hat{f}}^{L,L^*}(t) - \hat{b}^{L,L^*}(t) - f^{L^*}(t) \\ & \notin \left[-d_1^{L,L^*} + d_2^{L,L^*}, d_1^{L,L^*} - d_2^{L,L^*} \right] \right) = 1 - (1 - \alpha)^2 \end{split}$$

- Terms in L* may be approximated by L_{max} large
- Band centered in \hat{f}^{L^*}
- Remark: comparison with a confidence band at level L_{max} leads to the same width, but many more parameters!

When L^* is unknown: selecting the best L

Criterion: looking for the smaller band

$$\underset{L}{\operatorname{argmin}} \{ d_1^{L,L^*} - d_2^{L,L^*} \}$$

lpha / L	3	5	7	9	11	13	15
0.05	2.66	2.23	1.67	0.89	0.51	0.52	0.51
0.1	2.47	2.07	1.54	0.83	0.48	0.48	0.48
0.2	2.27	1.90	1.41	0.75	0.44	0.44	0.44

Table: Repetition over 1000 iterations, for \underline{f}^{L,L^*} debiased.

Model selection: penalize by the dimension to promote models of smaller dimension

When L^* is unknown: selecting the best L

Classical tools: estimation and error approximation in $\ell_2 \mbox{ norm}^2$ In our case: norm max

Ongoing work: adapting Lacour et al.³ to our case, with estimation of the bias (and variance associated to this estimation)

²E. Brunel's HdR, 2013

³Estimator selection: a new method with applications to kernel density estimation, Sankhya 1, 2017

Conclusion and perspective

- Functional model on an orthonomal basis
- If the dimension is known: every is easy
- If we use a fixed dimension: theoretically, we can control everything; but in practice, can be meaningless
- Selection of the dimension to construct the smallest meaningful confidence band

Conclusion and perspective

- Functional model on an orthonomal basis
- If the dimension is known: every is easy
- If we use a fixed dimension: theoretically, we can control everything; but in practice, can be meaningless
- Selection of the dimension to construct the smallest meaningful confidence band

- Work on the theoretical result for the model selection
- Try on benchmark and real dataset

References

- Liebl and Reimherr, Fast and Fair Simultaneous Confidence Bands for Functional Parameters, arXiv, 2022
- Sun and Loader, Simultaneous Confidence Bands for Linear Regression and Smoothing, Annals of Statistics, 1994
- Goldenshluger and Lepski, Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality, Annals of Statistics, 2011
- Brunel, Contributions à l'estimation non-paramétrique adaptative dans les modèles de durées. Mémoire de synthèse, HDR Université de Montpellier, 2013
- Lacour, Massart and Rivoirard, Estimator selection: a new method with applications to kernel density estimation, Sankhya 1, 2017