Sélection de modèle pour la construction de bandes de confiance sur la fonction moyenne

Emilie Devijver et Adeline Samson, emilie.devijver@univ-grenoble-alpes.fr

Outline

- Model
- When the level L^{*} is known
- When the level L^{*} is unknown: approximation by a fixed L
- When the level L^{*} is unknown: selecting the best L

Model

For $i=1, \ldots, N$ and $t \in[0,1]$,

$$
\begin{equation*}
Y_{i}(t)=f(t)+\varepsilon_{i}(t) . \tag{1}
\end{equation*}
$$

We observe a discretization of this process: for $j=1, \ldots, n$,

$$
\begin{equation*}
Y_{i j}=f\left(t_{j}\right)+\varepsilon_{i j}, \tag{2}
\end{equation*}
$$

Goal: estimate f

- estimation: projection onto a functional basis
- control of this estimation: confidence band

Illustration

$$
\mathrm{n}=300, \mathrm{~N}=50
$$

Assumptions

- The function f belongs to a space of dimension L^{*} $f \in \operatorname{Span}\left(\left(B_{\ell}^{L^{*}}\right)_{1 \leq \ell \leq L^{*}}\right)$ and is denoted $f^{L^{*}}:$

$$
f^{L^{*}}(t)=\sum_{\ell=1}^{L^{*}} \mu_{\ell}^{L^{*}} B_{\ell}^{L^{*}}(t)
$$

- $\left(B_{\ell}^{L^{*}}\right)_{1 \leq \ell}$ is an orthonormal basis
- The sequence ε_{i} is functional and belongs to $\operatorname{Span}\left(\left(B_{\ell}^{L^{\varepsilon}}\right)_{1 \leq \ell \leq L^{\varepsilon}}\right)$. There exists a sequence of coefficients $c_{i \ell}$ such that

$$
\varepsilon_{i j}=\sum_{\ell=1}^{L^{\varepsilon}} c_{i \ell} B_{\ell}^{L^{\varepsilon}}\left(t_{j}\right)
$$

- The noise is Gaussian: for all $i=1, \ldots, N$ and $\ell=1, \ldots, L^{\varepsilon}$,

$$
c_{i \ell} \sim_{i i d} \mathcal{N}\left(0, \sigma^{2}\right)
$$

When L^{*} is known

For a fixed $t \in[0,1]$, the estimator of $f^{L^{*}}(t)$ is defined by:

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}^{L^{*}} & =\left(\mathrm{B}_{L^{*}}^{T} \mathrm{~B}_{L^{*}}\right)^{-1} \mathrm{~B}_{L^{*} \mathrm{Y}}^{T} \\
\hat{f}^{L^{*}}(t) & =\sum_{\ell=1}^{L^{*}} \hat{\mu}_{\ell}^{L^{*}} B_{\ell}^{L^{*}}(t)
\end{aligned}
$$

with $\mathrm{B}_{L^{*}}^{T}=\left(B_{\ell}^{L^{*}}\left(t_{j}\right)\right)_{1 \leq \ell \leq L^{*}, 1 \leq j \leq n}$.

When L^{*} is known

Proposition The distributions of the estimator $\hat{\boldsymbol{\mu}}^{L^{*}}$ and of the estimated function are

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}^{L^{*}} & \sim \mathcal{N}\left(\boldsymbol{\mu}^{L^{*}}, \sigma^{2} \Sigma_{B}^{L, L^{\varepsilon}}\right) \\
\hat{f}^{L^{*}}(t)-f^{L^{*}}(t) & \sim \mathcal{N}\left(0, \sigma^{2} B(t) \Sigma_{B}^{L^{*}, L^{\varepsilon}} B(t)^{T}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\Sigma_{B}^{L^{*}, L^{\varepsilon}} & =\left(\mathrm{B}_{L^{*}}^{T} \mathrm{~B}_{L^{*}}\right)^{-1} \mathrm{~B}_{L^{*}}^{T} \Sigma_{L^{\varepsilon}} \mathrm{B}_{L^{*}}\left(\mathrm{~B}_{L^{*}}^{T} \mathrm{~B}_{L^{*}}\right)^{-1} \\
\Sigma_{L^{\varepsilon}} & =\operatorname{Diag}\left(\Sigma_{L^{\varepsilon}}, \ldots, \Sigma_{L^{\varepsilon}}\right) \\
\Sigma_{L^{\varepsilon}} & =\mathrm{B}_{L^{\varepsilon}} \mathrm{B}_{L^{\varepsilon}}^{T}
\end{aligned}
$$

When L^{*} is known

For a fixed confidence level α, we are looking for $d^{L^{*}}$ such that

$$
P\left(\forall t \in[0,1], \hat{f}^{L^{*}}(t)-d^{L^{*}}(t) \leq f^{L^{*}}(t) \leq \hat{f}^{L^{*}}(t)+d^{L^{*}}(t)\right)=1-\alpha
$$

Constant band

$$
P\left(\max _{t \in[0,1]}\left|\hat{f}^{L^{*}}(t)-f^{L^{*}}(t)\right| \geq d^{L^{*}}\right)=\alpha
$$

When L^{*} is known

Kac-Rice formulae

- If $X=\{X(t), t \in[0,1]\}$ is a centered Gaussian process with variance $\sigma^{2}, \mathcal{C}^{1}([0,1])$ almost surely
- Let $\tau(t)^{2}=\frac{\operatorname{Var}\left(X^{\prime}(t)\right)}{\sigma^{2}}$.

Then

$$
\mathbb{P}(\exists t \in[0,1]: X(t) \geq d) \leq \Phi\left(\frac{-d}{\sigma}\right)+\frac{\|\tau\|_{1}}{2 \pi} \exp \left\{-\frac{d^{2}}{2 \sigma^{2}}\right\}
$$

Looking for d such that

$$
\Phi\left(\frac{-d}{\sigma}\right)+\frac{\|\tau\|_{1}}{2 \pi} \exp \left\{-\frac{d^{2}}{2 \sigma^{2}}\right\}=\alpha
$$

Not constant band
Extension using Liebl and Reimherr ${ }^{1}$ when the band is adaptive
${ }^{1}$ Fast and Fair Simultaneous Confidence Bands for Functional Parameters, arXiv 2022

When L^{*} is known

Experiments: confidence band for $f^{L^{*}}$

Setting

Fourier basis, of level $L^{*}=11$,
$\mu_{\ell} \sim \mathcal{U}(\{-5,-4,-3,-2,2,3,4,5\})$ for all $\ell \in\left\{1, \ldots, L^{*}\right\}$
Results

$\alpha /(\mathrm{n}, \mathrm{N})$	$(50,100)$	$(500,1000)$
0.05	0.947	0.948
0.1	0.914	0.905
0.2	0.842	0.812

Table: Repetitions over 1000 iterations for the constant band

Conclusion
Good coverage, asymptotics

When L^{*} is unknown: for a fixed L
Let L. We denote

$$
\begin{aligned}
\mu_{\ell}^{L, L^{*}} & =<f^{L^{*}}, B_{\ell}^{L}>\text { for } \ell \in\{1, \ldots, L\} \\
f^{L, L^{*}}(t) & =\sum_{\ell=1}^{L} B_{\ell}^{L}(t) \mu_{\ell}^{L, L^{*}}
\end{aligned}
$$

When L^{*} is unknown: for a fixed L
Let L. We denote

$$
\begin{aligned}
\mu_{\ell}^{L, L^{*}} & =<f^{L^{*}}, B_{\ell}^{L}>\text { for } \ell \in\{1, \ldots, L\} \\
f^{L, L^{*}}(t) & =\sum_{\ell=1}^{L} B_{\ell}^{L}(t) \mu_{\ell}^{L, L^{*}}
\end{aligned}
$$

But we are not able to observe the functions on infinite set of points:

$$
\begin{aligned}
\mathrm{m}^{L, L^{*}} & =\left(\mathrm{B}_{L}^{T} \mathrm{~B}_{L}\right)^{-1} \mathrm{~B}_{L}^{T} \mathrm{~B}_{L^{*}} \mu^{L^{*}} \\
\underline{f}^{L, L^{*}}(t) & =\sum_{\ell=1}^{L} B_{\ell}^{L}(t) m_{\ell}^{L, L^{*}}
\end{aligned}
$$

When L^{*} is unknown: for a fixed L
Let L. We denote

$$
\begin{aligned}
\mu_{\ell}^{L, L^{*}} & =<f^{L^{*}}, B_{\ell}^{L}>\text { for } \ell \in\{1, \ldots, L\} \\
f^{L, L^{*}}(t) & =\sum_{\ell=1}^{L} B_{\ell}^{L}(t) \mu_{\ell}^{L, L^{*}}
\end{aligned}
$$

But we are not able to observe the functions on infinite set of points:

$$
\begin{aligned}
\mathrm{m}^{L, L^{*}} & =\left(\mathrm{B}_{L}^{T} \mathrm{~B}_{L}\right)^{-1} \mathrm{~B}_{L}^{T} \mathrm{~B}_{L^{*}} \mu^{L^{*}} \\
\underline{f}^{L, L^{*}}(t) & =\sum_{\ell=1}^{L} B_{\ell}^{L}(t) m_{\ell}^{L, L^{*}}
\end{aligned}
$$

When $n \rightarrow+\infty$,

$$
\mathrm{m}^{L, L^{*}} \rightarrow \mu^{L, L^{*}} \text { and } \underline{f}^{L, L^{*}}(t) \rightarrow f^{L, L^{*}}(t) \text { for all } t
$$

When L^{*} is unknown: for a fixed L

Let L.
For a fixed $t \in[0,1]$, the estimator of $\underline{f}^{L, L^{*}}(t)$ is defined by:

$$
\begin{aligned}
\hat{m}^{L, L^{*}} & =\left(\mathrm{B}_{L}^{T} \mathrm{~B}_{L}\right)^{-1} \mathrm{~B}_{L}^{T} \mathrm{y} \\
\hat{\underline{f}}^{L, L^{*}}(t) & =\sum_{\ell=1}^{L} \hat{m}_{\ell}^{L, L^{*}} B_{\ell}^{L}(t)
\end{aligned}
$$

When L^{*} is unknown: for a fixed L

Let L.
For a fixed $t \in[0,1]$, the estimator of $\underline{f}^{L, L^{*}}(t)$ is defined by:

$$
\begin{gathered}
\hat{m}^{L, L^{*}}=\left(B_{L}^{T} B_{L}\right)^{-1} B_{L}^{T} y \\
\hat{f}^{L, L^{*}}(t)=\sum_{\ell=1}^{L} \hat{m}_{\ell}^{L, L^{*}} B_{\ell}^{L}(t) \\
\underline{\hat{f}}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t) \sim \mathcal{N}\left(0, \sigma^{2} B(t) \Sigma_{B}^{L, L^{\varepsilon}} B(t)^{T}\right) \\
\hat{f}^{L, L^{*}}(t)-f^{L^{*}}(t) \sim \mathcal{N}\left(b^{L, L^{*}}(t), \sigma^{2} B(t) \Sigma_{B}^{L, L^{\varepsilon}} B(t)^{T}\right)
\end{gathered}
$$

where

$$
b^{L, L^{*}}(t)=\underline{f}^{L, L^{*}}(t)-f^{L^{*}}(t) .
$$

When L^{*} is unknown: for a fixed L

Constant band

$$
P\left(\max _{t \in[0,1]}\left|\hat{f}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)\right| \geq d^{L, L^{*}}\right)=\alpha
$$

Looking for $d^{L, L^{*}}$ such that

$$
\Phi\left(\frac{-d^{L, L^{*}}}{\sigma}\right)+\frac{\left\|\tau_{L}\right\|_{1}}{2 \pi} \exp \left\{-\frac{\left(d^{L, L^{*}}\right)^{2}}{2 \sigma^{2}}\right\}=\alpha .
$$

When L^{*} is unknown: for a fixed L
Experiments: Confidence band for $\underline{f}^{L, L^{*}}$

Setting

Fourier basis, of level $L^{*}=11$,
$\mu_{\ell} \sim \mathcal{U}(\{-5,-4,-3,-2,2,3,4,5\})$ for all $\ell \in\left\{1, \ldots, L^{*}\right\}$
$N=100, n=50$

Results

α / L	3	5	7	9	11	13	15
0.05	0.997	0.983	0.974	0.964	0.947	0.949	0.955
0.1	0.991	0.970	0.950	0.934	0.914	0.920	0.901
0.2	0.970	0.942	0.904	0.871	0.842	0.806	0.832

Table: Repetition over 1000 iterations, for $\underline{f}^{L, L^{*}}$.

Conclusion
Very conservative when $L \neq L^{*}$ for $\underline{f}^{L, L^{*}}$.

When L^{*} is unknown: for a fixed L
Experiments: Confidence band for $\underline{f}^{L, L^{*}}$

Conclusion
The estimation and the band are meaningless!

When L^{*} is unknown: for a fixed L
Confidence band for $f^{L^{*}}$

We want to control

$$
\begin{aligned}
\underline{\hat{f}}^{L, L^{*}}(t)-f^{L^{*}}(t)= & \hat{f}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)+\underline{f}^{L, L^{*}}(t) \\
& +\hat{f}^{L^{*}}(t)-\hat{f}^{L^{*}}(t)+\hat{\hat{f}}^{L, L^{*}}(t)-\hat{\underline{f}}^{L, L^{*}}(t)-f_{L^{*}}(t)
\end{aligned}
$$

When L^{*} is unknown: for a fixed L
Confidence band for $f^{L^{*}}$

We want to control

$$
\begin{aligned}
\underline{f}^{L, L^{*}}(t)-f^{L^{*}}(t)= & \underline{f}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)+\underline{f}^{L, L^{*}}(t) \\
& +\hat{f}^{L^{*}}(t)-\hat{f}^{L^{*}}(t)+\underline{\hat{f}}^{L, L^{*}}(t)-\underline{\hat{f}}^{L, L^{*}}(t)-f_{L^{*}}(t) \\
& P\left(\max _{t \in[0,1]}\left|\hat{f}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)\right| \geq d_{1}^{L, L^{*}}\right)=\alpha
\end{aligned}
$$

When L^{*} is unknown: for a fixed L
Confidence band for $f^{L^{*}}$

We want to control

$$
\begin{aligned}
& \underline{\hat{f}}^{L, L^{*}}(t)-f^{L^{*}}(t)=\hat{f}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)+\underline{f}^{L, L^{*}}(t) \\
& \quad+\hat{f}^{L^{*}}(t)-\hat{f}^{L^{*}}(t)+\underline{\hat{f}}^{L, L^{*}}(t)-\hat{f}^{L, L^{*}}(t)-f_{L^{*}}(t) \\
& \quad P\left(\max _{t \in[0,1]}\left|\underline{\hat{L}}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)\right| \geq d_{1}^{L, L^{*}}\right)=\alpha \\
& P\left(\max _{t \in[0,1]}\left|\hat{\hat{f}}^{L, L^{*}}(t)-\hat{f}^{L^{*}}(t)-\underline{f}^{L, L^{*}}(t)+f^{L^{*}}(t)\right| \geq d_{2}^{L, L^{*}}\right)=\alpha
\end{aligned}
$$

When L^{*} is unknown: for a fixed L
Confidence band for $f^{L^{*}}$

We want to control

$$
\begin{gathered}
\underline{f}^{L, L^{*}}(t)-f^{L^{*}}(t)=\underline{f}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)+\underline{f}^{L, L^{*}}(t) \\
\quad+\hat{f}^{L^{*}}(t)-\hat{f}^{L^{*}}(t)+\underline{f}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)-f_{L^{*}}(t) \\
P\left(\max _{t \in[0,1]}\left|\hat{f}^{L, L^{*}}(t)-\underline{f}^{L, L^{*}}(t)\right| \geq d_{1}^{L, L^{*}}\right)=\alpha \\
P\left(\max _{t \in[0,1]}\left|\hat{f}^{L, L^{*}}(t)-\hat{f}^{L^{*}}(t)-\underline{f}^{L, L^{*}}(t)+f^{L^{*}}(t)\right| \geq d_{2}^{L, L^{*}}\right)=\alpha \\
\hat{b}^{L, L^{*}}(t)=\underline{f}^{L, L^{*}}(t)-\hat{f}^{L^{*}}(t)
\end{gathered}
$$

When L^{*} is unknown: for a fixed L
Confidence band for $f^{L^{*}}$

$$
\begin{aligned}
& P\left(\forall t \in[0,1], \hat{f}^{L, L^{*}}(t)-\hat{b}^{L, L^{*}}(t)-f^{L^{*}}(t)\right. \\
&\left.\notin\left[-d_{1}^{L, L^{*}}+d_{2}^{L, L^{*}}, d_{1}^{L, L^{*}}-d_{2}^{L, L^{*}}\right]\right)=1-(1-\alpha)^{2}
\end{aligned}
$$

- Terms in L^{*} may be approximated by $L_{\text {max }}$ large
- Band centered in $\hat{f}^{L^{*}}$
- Remark: comparison with a confidence band at level $L_{\text {max }}$ leads to the same width, but many more parameters!

When L^{*} is unknown: selecting the best L

Criterion: looking for the smaller band

$$
\underset{1}{\operatorname{argmin}}\left\{d_{1}^{L, L^{*}}-d_{2}^{L, L^{*}}\right\}
$$

α / L	3	5	7	9	11	13	15
0.05	2.66	2.23	1.67	0.89	0.51	0.52	0.51
0.1	2.47	2.07	1.54	0.83	0.48	0.48	0.48
0.2	2.27	1.90	1.41	0.75	0.44	0.44	0.44

Table: Repetition over 1000 iterations, for $\underline{f}^{L, L^{*}}$ debiased.

Model selection: penalize by the dimension to promote models of smaller dimension

When L^{*} is unknown: selecting the best L

Classical tools: estimation and error approximation in ℓ_{2} norm 2 In our case: norm max

Ongoing work: adapting Lacour et al. ${ }^{3}$ to our case, with estimation of the bias (and variance associated to this estimation)

[^0]
Conclusion and perspective

- Functional model on an orthonomal basis
- If the dimension is known: every is easy
- If we use a fixed dimension: theoretically, we can control everything; but in practice, can be meaningless
- Selection of the dimension to construct the smallest meaningful confidence band

Conclusion and perspective

- Functional model on an orthonomal basis
- If the dimension is known: every is easy
- If we use a fixed dimension: theoretically, we can control everything; but in practice, can be meaningless
- Selection of the dimension to construct the smallest meaningful confidence band
- Work on the theoretical result for the model selection
- Try on benchmark and real dataset

References

- Liebl and Reimherr, Fast and Fair Simultaneous Confidence Bands for Functional Parameters, arXiv, 2022
- Sun and Loader, Simultaneous Confidence Bands for Linear Regression and Smoothing, Annals of Statistics, 1994
- Goldenshluger and Lepski, Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality, Annals of Statistics, 2011
- Brunel, Contributions à l'estimation non-paramétrique adaptative dans les modèles de durées. Mémoire de synthèse, HDR Université de Montpellier, 2013
- Lacour, Massart and Rivoirard, Estimator selection: a new method with applications to kernel density estimation, Sankhya 1, 2017

[^0]: ${ }^{2}$ E. Brunel's HdR, 2013
 ${ }^{3}$ Estimator selection: a new method with applications to kernel density estimation, Sankhya 1, 2017

