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SYMMETRIC SIMPLE EXCLUSION PROCESS (SSEP)
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▷ Configuration 𝜂 ∈ Ω ∶= {0, 1}Λ𝑁 , 𝜂𝑥 = 1 for an occupied site, 𝜂𝑥 = 0 for an
empty site. Initially, 𝜂𝑥 = 1 w.p. 𝜌0(𝑥/𝑁).

▷ Stirring dynamics: particles jump at rate 1 to empty neighbors

The SSEP’s empirical measure, on a diffusive timescale,
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converges in a weak sense to 𝜌(𝑡, 𝑢)𝑑𝑢, where 𝜌 is called the SSEP’s
hydrodynamic limit, and is the solution to the heat equation

{𝜕𝑡𝜌 = 𝜕𝑢𝑢𝜌
𝜌(0, ⋅) = 𝜌0

.



SSEP, NO BOUNDARY INTERACTION

Simulation by Hugo Dorfsman (𝛼 = 1/3, 𝛽 = 2/3, 𝑁 = 1000)

▷ Particles reflected at the boundaries: Neumann boundary conditions

𝜕𝑢𝜌(𝑡, 0) = 𝜕𝑢𝜌(𝑡, 1) = 0.




NON-EQUILIBRIUM SSEP
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▷ To maintain the SSEP out of equilibrium, we put it in contact with infinite
reservoirs with density 𝛼 and 𝛽.

▷ particles are created at rate 𝛼 and removed at rate 1 − 𝛼 at the left
boundary. Same with 𝛽 on the right.

The hydrodynamic limit 𝜌 is then supplemented by Dirichlet boundary
conditions

⎧{
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𝜕𝑡𝜌 = 𝜕𝑢𝑢𝜌
𝜌(0, ⋅) = 𝜌0
𝜌(𝑡, 0) = 𝛼, 𝜌(𝑡, 1) = 𝛽.

.
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.



SSEP, STRONG RESERVOIRS

Simulation by Hugo Dorfsman (𝛼 = 1/3, 𝛽 = 2/3, 𝑁 = 1000)

▷ Dirichlet boundary conditions

𝜌(𝑡, 0) = 𝛼, 𝜌(𝑡, 1) = 𝛽.




HYDRODYNAMIC LIMIT FOR BOUNDARY-DRIVEN SSEP

We define stationary solution to the hydrodynamic limit

𝜌⋆(𝑢) = 𝛼 + (𝛽 − 𝛼)𝑢, 𝑢 ∈ [0, 1],

and define the product measure fitting 𝜌⋆,

𝜇⋆ = ⊗𝑁
𝑥=1𝐵𝑒𝑟(𝜌(𝑥/𝑁))

𝛼 = 𝛽 : Equilibrium case , 𝜇⋆ is reversible w.r.t. the dynamics.
𝛼 ≠ 𝛽: the stationary state is non-explicit, but approximated by 𝜇⋆.



WEAK BOUNDARIES

Weak interactions with the boundaries : particles removed and created
with rate of order 𝑁−𝜃.

The hydrodynamic limit’s b.c. now depend on 𝜃 :
▷ 𝜃 < 1 : Dirichlet, 𝜌(𝑡, 0) = 𝛼, 𝜌(𝑡, 1) = 𝛽.
▷ 𝜃 = 1 : Robin, 𝜕𝑢𝜌(𝑡, 0) = 𝜌(𝑡, 0) − 𝛼, 𝜕𝑢𝜌(𝑡, 1) = 𝛽 − 𝜌(𝑡, 1).
▷ 𝜃 > 1 : Neumann, 𝜕𝑢𝜌(𝑡, 0) = 𝜕𝑢𝜌(𝑡, 1) = 0.

For 𝜃 = 1, the stationary profile becomes

𝜌⋆(𝑢) = 𝛼 + 𝛽 − 𝛼
3 (𝑢 + 1), 𝑢 ∈ [0, 1],



SSEP, WEAK RESERVOIRS PHASE

Simulation by Hugo Dorfsman (𝛼 = 1/3, 𝛽 = 2/3, 𝑁 = 1000)

▷ Robin boundary conditions

𝜕𝑢𝜌(𝑡, 0) = 𝜌(𝑡, 0) − 𝛼, 𝜕𝑢𝜌(𝑡, 1) = 𝛽 − 𝜌(𝑡, 1).




DYNAMICAL LARGE DEVIATIONS, 𝜃 < 1

Question : what is the probability to observe, for 𝑁 finite but very large, a
macroscopic profile 𝜋𝑁 different from the hydrodynamic limit 𝜌?

For 𝜃 < 1 (Dirichlet b.c.),

Theorem (Bertini, De Sole, Gabrielli, Jona–Lasinio, Landim ’03)
Fix an initial profile 𝜌0. There exists a convex functional 𝐼𝑇 (𝜋 ∣ 𝜌0) such that
for any closed set 𝐶 (resp open set 𝑂) in the set of trajectories,

lim sup
𝑁→∞

1
𝑁 ℙ(𝜋𝑁 ∈ 𝐶) ≤ − inf

𝜋∈𝐶
𝐼𝑇 (𝜋 ∣ 𝜌0)

and
lim inf
𝑁→∞

1
𝑁 ℙ(𝜋𝑁 ∈ 𝑂) ≤ − inf

𝜋∈𝑂
𝐼𝑇 (𝜋 ∣ 𝜌0)
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LARGE DEVIATION FUNCTIONAL

Question : How is the large deviations functional characterized ?

Define for any test function 𝐻

𝐽𝐻(𝜋) = ⟨𝜋𝑇 , 𝐻𝑇 ⟩ − ⟨𝜌0, 𝐻0⟩ − ∫
𝑇

0
𝑑𝑡⟨𝜋𝑡, 𝜕𝑡𝐻𝑡 + Δ𝐻𝑡⟩

+ 𝛽 ∫
𝑇

0
𝑑𝑡𝜕𝑢𝐻𝑡(1) − 𝛼 ∫

𝑇

0
𝑑𝑡𝜕𝑢𝐻𝑡(0) − ∫

𝑇

0
𝑑𝑡⟨𝜌𝑡(1 − 𝜌𝑡), (𝜕𝑢𝐻𝑡)2⟩

If 𝜋 = 𝜌 is the solution to the hydrodynamic limit with Dirichlet b.c.,
then

𝐽𝐻(𝜌) = − ∫
𝑇

0
𝑑𝑡⟨𝜌𝑡(1 − 𝜌𝑡), (𝜕𝑢𝐻𝑡)2⟩

One then defines the rate function

𝐼𝑇 (𝜋) = sup
𝐻

𝐽𝐻(𝜋).
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DYNAMICAL LARGE DEVIATIONS, 𝜃 = 1

Question : what is the probability to observe, for 𝑁 finite but very large, a
macroscopic profile 𝜋𝑁 different from the hydrodynamic limit 𝜌?

For 𝜃 = 1 (Robin b.c.),

Theorem (Franco, Gonçalves, Landim, Neumann ’22)
Fix an initial profile 𝜌0. There exists a convex functional 𝐼𝑇 (𝜋 ∣ 𝜌0) such that
for any closed set 𝐶 (resp open set 𝑂) in the set of trajectories,
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LARGE DEVIATION FUNCTIONAL

Question : How is the large deviations functional characterized ?

This time,
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For weak reservoir interactions, at the level of large deviations, the boundary
behavior is no longer fixed and can fluctuate.

In both weak and strong cases, the minimizer 𝐻𝜋 of 𝐽𝐻 is aweak driving
force that makes the deviation typical
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STATIC LARGE DEVIATIONS, 𝜃 < 1

Question : what is the probability to observe in the stationary state 𝜇𝑁 , for
𝑁 finite but very large, a profile 𝛾𝑁 different from the stationary profile 𝜌⋆?

For 𝜃 < 1 (Dirichlet b.c.),

Theorem (Bertini, De Sole, Gabrielli, Jona–Lasinio, Landim ’03)
There exists a convex functional 𝑆(𝛾) such that for any closed set 𝐶 (resp
open set 𝑂) in the set of profiles, under the stationary state,

lim sup
𝑁→∞

1
𝑁 𝜇𝑁(𝛾𝑁 ∈ 𝐶) ≤ − inf

𝛾∈𝐶
𝑆(𝛾)

and
lim inf
𝑁→∞

1
𝑁 𝜇𝑁(𝛾𝑁 ∈ 𝑂) ≤ − inf

𝛾∈𝑂
𝑆(𝛾)

where the quasi potential is defined as

𝑆(𝛾) = lim
𝑇 →∞

sup
𝜋𝑇 =𝛾,𝜋0=𝜌⋆

𝐼𝑇 (𝜋).



THE QUASI POTENTIAL 𝑆(𝛾)

The quasi potential can be defined differently :

1) As the entropy w.r.t. a product Bernoulli measure fitting 𝜌⋆

𝑆(𝛾) = ∫
1

0
𝑑𝑢 [𝛾 log( 𝛾

𝜌⋆ ) + (1 − 𝛾) log( 1 − 𝛾
1 − 𝜌⋆ )] (𝑢).

2) As a variational problem 𝑆(𝛾) = inf𝑓 𝒢(𝛾, 𝑓) whose minimizer 𝐹 = 𝑓𝛾 is
solution to [Derrida Lebowitz Speer ’02]

𝐹 ″ = (𝛾 − 𝐹) (𝐹 ′)2

𝐹(1 − 𝐹)

with b.c. 𝐹(0) = 𝛼, 𝐹(1) = 𝛽.



STATIC LARGE DEVIATIONS, 𝜃 = 1

Question : what is the probability to observe in the stationary state 𝜇𝑁 , for
𝑁 finite but very large, a profile 𝛾𝑁 different from the stationary profile 𝜌⋆?

For 𝜃 = 1 (Robin b.c.),

Theorem (Bouley, E’, Landim, ’22)
There exists a convex functional 𝑆(𝛾) such that for any closed set 𝐶 (resp
open set 𝑂) in the set of profiles, under the stationary state,
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THE QUASI POTENTIAL 𝑆(𝛾)

As in the case 𝜃 < 1, one hopes to derive different formulations for the quasi
potential.
1) The formulation as an entropy no longer holds.

2) However, still equal to a variational problem 𝑆(𝛾) = inf𝑓 𝒢(𝛾, 𝑓) whose
minimizer 𝐹 = 𝑓𝛾 is solution to [Derrida Lebowitz Speer ’02]

𝐹 ″ = (𝛾 − 𝐹) (𝐹 ′)2

𝐹(1 − 𝐹)

this time with Robin b.c. 𝐹 ′(0) = 𝐹(0) − 𝛼, 𝐹 ′(1) = 𝛽 − 𝐹(1).



THANKS FOR YOUR ATTENTION !
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