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Section 1
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Industrial Context

In the context of wind farm development, one of the central quantities of interest is the:

Levelized Cost of Energy

Definition: Average revenue per unit of electricity generated required to recover the costs of building
and operating a generating plant during an assumed financial life and duty cycle.

LCOE :=
Sum of costs over lifetime

Sum of electrical energy produced over lifetime

Source: https://en.wikipedia.org/wiki/Levelized_cost_of_electricity

Here, we focus on quantifying the denominator, or equivalently the Expected Annual Production
(EAP), averaged over the lifetime of the windfarm project.
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Input data for the study

V SAT
T = (vSAT

t )t∈T

DSAT
T = (dSAT

t )t∈T

wind-speed & direction satellite
reconstructions on long-term
period T

V SIT
T ′ = (vSIT

t,i )t∈T ′

wind-speed onsite measures
at heights zi , i = 0, . . . , n on
short-term period T ′

Figure: On-site data for multiple heights, with ERA satellite proxy
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Input data, zoom

Figure: On-site data for multiple heights, with ERA satellite proxy, zoom on January 2019
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Power curve

Figure: Reconstructed power function, by means of standard interpolation methods

I Yields instantaneaous turbine power, given incoming wind speed:

VTURB
T = (vTURB

t )t∈T

I Main challenge: extrapolate VTURB
T using available data V SAT

T ,DSAT
T ,V SIT

T ′
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EDF-R extrapolation procedure (1/2) : statistical modeling

Raw noisy wind velocity
data, may be incomplete,

at measuring mast position
V SIT
T ′

Completed data over
the measurement period

V̂ SIT
T ′

Extrapolated wind velocity data, at
turbine’s height and mast’s position

V̂HUB
T ′

Extrapolated wind velocity data,
at turbine’s height and mast’s
position, over the LT period

V̂HUB
T

Extrapolated wind velocity
data, at turbines’ height and
positions, over the LT period

V̂TURB
T

Calculated power data, at
turbine’s height and po-

sition, over the LT period
P̂T

1

2

3

4

5

6

basic single imputation

of missing data

basic spatial regression

over log data

basic temporal regression

using satellite data

complex CFD simulation of the

wind velocity field

wind velocity propagation

through the power curve

Figure: EDF-R extrapolation chain
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EDF-R extrapolation procedure (2/2) : physical modeling

Extrapolated wind velocity data,
at turbine’s height and mast’s
position, over the LT period

V̂HUB
T

Extrapolated wind velocity
data, at turbine’s height and
position, over the LT period

V̂TURB
T

Calculated power data, at
turbine’s height and po-

sition, over the LT period
P̂T

4

5

6

complex CFD simulation of the

wind velocity field

wind velocity propagation

through the power curve

Figure: EDF-R extrapolation chain
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Formalization of the industrial problem

We are interested in estimating the EAP (expected annual production), for a given project duration
of Ny years :

EAP =
1

Ny

∑
t∈T

p̂t (1)

Each of the above-described steps adds different sources of uncertainty to the power forecast, in
particular:

I Mast measurement errors;

I Vertical extrapolation statistical uncertainty and modeling error;

I Long term-reconstruction extrapolation statistical uncertainty and modeling error;

I Horizontal extrapolation modeling error;

I Power curve modeling error.

I The objective is to estimate the uncertainty surrounding EAP.
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Section 2

Proposed approach
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Monte-Carlo uncertainty quantification

Current EAP quantification methodology

1. Determine parameter estimates θ̂ from available data D := V SAT
T ,V SIT

T ′ , and deduce long-term

hub-height wind-speed prediction L(VHUB
T |θ̂,D)

2. Predict EAP from deterministic physical model F applied to VHUB
T EAP = F(VHUB

T )

Proposed parametric bootstrap scheme

Repeat for n = 1, . . . ,B:

1. Simulate synthetic dataset D∗b
L
= V SAT
T , V̂ SIT

T ′ |θ̂ conditional on the estimated parameters θ̂

2. Recompute parameter estimate θ̂∗b , from synthetic dataset D∗b
3. Simulate VHUB∗

T ,b conditional on θ̂∗b , and deduce EAP: ÊAP∗b = F(V̂HUB∗
T ,b )

From bootstrap sample
(
Ê[EAP∗]b

)
b=1,...,B

, derive bias estimates, confidence intervals, etc.

I In fact, we want to predict the expected EAP: E [EAP] = E
[
F(VHUB

T )
]
.

I To keep things tractable, we use first-order Taylor approximation: E[EAP∗] ≈ F
(
E
[
V̂HUB∗
T

])
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Vertical extrapolation reminder: Shear modeling

Goal: Predict (in practice, simulate) short-term hourly wind speeds at hub height

vHUB
T ′ := vHUB

t t∈T ′ ,

I Power-law, aka shear, model:

vSIT
t,i = vREF

t (zi/zREF )αh(t),m(t) + σh(t),m(t)εt,i (2)

with:

I vSIT
t,i mast measures time-series at height zi for i ∈ {1, . . . , n} ;

I vREF
t := vSIT

t,0 reference time-series (mast measure with height zREF := z0 closest to hub-height zHUB )

I εt,i
iid∼ N (O, 1) the measurement / modeling errors

I ”shear” parameter αh,m and variance σ2
h,m depend on hour h ∈ {0, . . . , 23} and month

m ∈ {1, . . . , 12}
I OLS estimate α̂h,m and σ̂2

h,m used in EDF-Re methodology to simulate the short-term

hub-height time-series, following:

v̂HUB
T ′ =

(
vREF
t

(
zHUB/zREF

)α̂h(t),m(t)
)

t∈T ′
(3)
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Long Term reconstruction reminder: MCP regression

Goal: Predict (or in practice, simulate) long-term wind speeds at hub height

vHUB
T := (v̂HUB

t )t∈T ,

I MCP (matrix correlate predict) linear regression model:

v̂HUB
t = βs(t),0 + vSAT

t βs(t),1 + γs(t)ξt , (4)

This can be estimated based on the following quantities for time-steps t in the common period
T ∩ T ′:

I (v̂HUB
t simulated short-term wind speeds at hub height (obtained through vertical extrapolation);

I vSAT
t satellite reconstruction;

I ξt
iid∼ N (0, 1) measurement / modeling error term.

I MCP coefficients βs and variance term γ2
s depend on wind sector s = 1, . . . , 12, computed from

direction satellite proxy DSAT

I OLS estimates (β̂s , γ̂2
s )s=1,...,12 used to predict long-term wind speeds at hub-height:

v̂HUB
T =

(
β̂s(t),0 + β̂s(t),1v

SAT
t

)
t∈T

, (5)
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Limits of current modeling and proposed alternative

I The reconstructed hub-height mast measures V̂HUB
T ′ is modeled according to the MCP model:

v̂HUB
t = βs(t),0 + βs(t),1v

SAT
t + γs(t)ξt

even though it has been simulated acccording to the vertical extrapolation ”shear” model:

v̂HUB
t = vREF

t (zhub/zref )α̂h(t),m(t) + σh(t),m(t)εt ,

I It is not clear whether MCP and shear models assumptions are compatible, which may result in
artifically biased results

I This is why, we propose to apply MCP modeling to (observed) reference time-series V REF
T ′

rather than (simulated) hub-height time-series V̂ hub
T ′ , assuming that:

vREF
t = βs(t),0 + βs(t),1v

SAT
t + γs(t)ξt .
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Full uncertainty model

Our final statistical model assumptions reads:

vREF
t = βs(t),0 + βs(t),1v

SAT
t + γs(t)ξt

vSIT
t,i = vREF

t (zi/zREF )αh(t),m(t) + σh(t),m(t)εt,i

vHUB
t = vREF

t (zHUB/zREF )αh(t),m(t) + σh(t),m(t)εt .

The long-term hub-height expected wind-speed is then easily
predicted ∀t ∈ T as:

E
[
vHUB
t

]
=

(
βs(t),0 + βs(t),1v

SAT
t

)
(zHUB/zREF )αh(t),m(t) .

𝑉𝑇
𝑆𝐴𝑇

𝑉𝑇′
𝑅𝐸𝐹

𝑉𝑇
𝐻𝑈𝐵

𝑉𝑇
𝑅𝐸𝐹

𝑉𝑇′
𝑆𝐼𝑇

𝛽𝑠, 𝛾𝑠

𝛼ℎ,𝑚, 𝜎ℎ,𝑚

Directed acyclic graph (DAG) of the wind
speed statistical model

Question: Can we also model and account for V SAT
T
′s uncertainty?
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Signal Processing Intermezzo : the spectral factorization method

Spectral factorization is concerned with the problem of generating a standard Gaussian signal having
a given target autocorrelation function τ → ρ∗(τ). It involves designing a suitable linear filter H,
used afterwards on a Gaussian white noise sample (εt)t . The filter’s output should have the same
autocorrelation τ → ρs(τ) as the target one.

H

ρ∗(τ)

(εt)t yt = H(t) ∗ εt

Figure: Block diagram for spectral factorization
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Stationarization

The adopted model is mainly derived from this approach. To properly use it, we resorted to breaking
down the underlying stochastic process (V SAT

t )t into a stationary process (X stat
t )t and a residual

process (X res
t )t .

V SAT
t = X res

t + X stat
t ∀t ∈ T (6)

We imposed the following further (strong but hopefully reasonable) assumptions :

1. The (X res
t )t process is deterministic,

2. The process (X stat
t )t is a filtered Gaussian White Noise, such as : X stat

t = Ht ∗ εt , where Ht is a

linear filter and εt
i.i.d∼ N (0, 1), a standard Gaussian white noise.

In practice, we used first Fourier, followed by wavelet, decompositions to identify X res
t . The Fourier

decomposition was also used to generate the linear filter H.
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Section 3

Application to case study
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Overview of case study

I We applied our methodology to obtain a bootstrap sample of size 100 from the EAP for a
certain windfarm project, both with and without accounting for the uncertainty tainting the
long-term satellite data V SAT

T .

I The wind-speed modeling, bootstrap and spectral factorization algorithms were all coded into
the experimental Python winduq package, which depending on numerous standard packages
(statsmodel, scipy, pandas, openturns, . . . )

I the spatial extrapolation step, enabling to propagate the hub-height, long-term wind speed
time-series accross the wind farm, accounting for wake effects, and turbine power curve, was
done thanks to the open-source pywake Python package.
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Deseason using 5 Fourier decomposition (5 first modes)
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Simulated vs original satellite time-series
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Difference between simulated and original time-series

Without UQ on long-term data With UQ on long-term data
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EAP bootstrap sample

Without UQ on long-term data With UQ on long-term data
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Section 4

Discussion
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Conclusions and perspectives

What we’ve done so far

I Propose a fully coherent statistical model for wind-speed data, both onsite measures and
long-term proxys;

I Develop a parametric bootstrap approach to quantify uncertainty on the long-term EYA of the
windfarm project;

I Illustrate it on a case-study

What’s yet to be done

I Resolve negative wind speed simulation issus, due to Gaussian assumption, as well as ensuing
bias towards real data

I Quantify uncertainty on long-term wind direction also, not only absolute speed, for instance by
considering the 2D speed vector (may solve first point!)

I Elicit priors on the uncertain parameters and calculate Bayesian predictive distribution to solve
double Monte-Carlo issue

I Perform sensitivity analysis to identify most influent uncertainty sources;

I More informed long-term weather predictions, accounting e.g. for climate change

I . . .
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Thank You for your Attention!
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