

Uncertainty Quantification for long-term Wind Farm Production: A Monte-Carlo Study

Merlin Keller¹, Sanaa Zannane¹ Nicolas Paul¹ Cédric Dall'Ozzo², Lan Ding²

EDF R&D 1 - PRISME, EDF Re 2

Journes MAS 2022, Rouen

イロト イポト イヨト イヨト 三日

Summary

Introduction Proposed approach Wind speed modeling Spectral factorization Application to case study Spectral Factorization Simulated time-series Discussion

・ロン ・回 と ・ ヨン ・ ヨン

э

Section 1

Introduction

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のQ (~ 2/27

Industrial Context

In the context of wind farm development, one of the central quantities of interest is the:

Levelized Cost of Energy

Definition: Average revenue per unit of electricity generated required to recover the costs of building and operating a generating plant during an assumed financial life and duty cycle.

 $LCOE := \frac{Sum of costs over lifetime}{Sum of electrical energy produced over lifetime}$

Source: https://en.wikipedia.org/wiki/Levelized_cost_of_electricity

Here, we focus on quantifying the denominator, or equivalently the Expected Annual Production (EAP), averaged over the lifetime of the windfarm project.

Input data for the study

$$\begin{array}{lll} V_{\mathcal{T}}^{SAT} & = & (v_t^{SAT})_{t \in \mathcal{T}} \\ D_{\mathcal{T}}^{SAT} & = & (d_t^{SAT})_{t \in \mathcal{T}} \end{array}$$

wind-speed & direction satellite reconstructions on long-term period $\ensuremath{\mathcal{T}}$

$$V_{\mathcal{T}'}^{SIT} = (v_{t,i}^{SIT})_{t \in \mathcal{T}'}$$

wind-speed onsite measures at heights z_i , i = 0, ..., n on short-term period \mathcal{T}'

Figure: On-site data for multiple heights, with ERA satellite proxy $\frac{2}{4/27}$

Input data, zoom

Power curve

Figure: Reconstructed power function, by means of standard interpolation methods

> Yields instantaneaous turbine power, given incoming wind speed:

$$V_{\mathcal{T}}^{TURB} = (v_t^{TURB})_{t \in \mathcal{T}}$$

▶ Main challenge: extrapolate V_T^{TURB} using available data $V_T^{SAT}, D_T^{SAT}, V_{T'}^{SIT}$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Introduction Proposed approach Application to case study Discussion

EDF-R extrapolation procedure (1/2) : statistical modeling

Introduction Proposed approach Application to case study Discussion

EDF-R extrapolation procedure (2/2) : physical modeling

Figure: EDF-R extrapolation chain

Formalization of the industrial problem

We are interested in estimating the EAP (expected annual production), for a given project duration of N_y years :

$$\mathsf{EAP} = \frac{1}{N_y} \sum_{t \in \mathcal{T}} \widehat{\rho}_t \tag{1}$$

Each of the above-described steps adds different sources of uncertainty to the power forecast, in particular:

- Mast measurement errors;
- Vertical extrapolation statistical uncertainty and modeling error;
- Long term-reconstruction extrapolation statistical uncertainty and modeling error;
- Horizontal extrapolation modeling error;
- Power curve modeling error.
- ▶ The objective is to estimate the uncertainty surrounding EAP.

Section 2

Proposed approach

< □ > < ⑦ > < 言 > < 言 > 言 の Q (~ 10 / 27

Monte-Carlo uncertainty quantification

Current EAP quantification methodology

- 1. Determine parameter estimates $\hat{\theta}$ from available data $\mathcal{D} := V_{\mathcal{T}}^{SAT}, V_{\mathcal{T}'}^{SIT}$, and deduce long-term hub-height wind-speed prediction $\mathcal{L}(V_{\mathcal{T}}^{HUB}|\hat{\theta}, \mathcal{D})$
- 2. Predict EAP from deterministic physical model \mathcal{F} applied to $V_{\mathcal{T}}^{HUB} EAP = \mathcal{F}(V_{\mathcal{T}}^{HUB})$

Proposed parametric bootstrap scheme

Repeat for $n = 1, \ldots, B$:

- 1. Simulate synthetic dataset $\mathcal{D}_{b}^{*} \stackrel{\mathcal{L}}{=} V_{\mathcal{T}}^{SAT}, \widehat{V}_{\mathcal{T}'}^{SIT} | \widehat{\theta}$ conditional on the estimated parameters $\widehat{\theta}$
- 2. Recompute parameter estimate $\hat{\theta}_{h}^{*}$, from synthetic dataset \mathcal{D}_{h}^{*}
- 3. Simulate $V_{\mathcal{T},b}^{HUB*}$ conditional on $\hat{\theta}_b^*$, and deduce EAP: $\hat{E}AP_b^* = \mathcal{F}(\hat{V}_{\mathcal{T},b}^{HUB*})$

From bootstrap sample $\left(\widehat{\mathbb{E}}[EAP^*]_b\right)_{b=1,...,B}$, derive bias estimates, confidence intervals, etc.

- ▶ In fact, we want to predict the expected EAP: $\mathbb{E}[EAP] = \mathbb{E}[\mathcal{F}(V_T^{HUB})]$.
- ► To keep things tractable, we use first-order Taylor approximation: $\mathbb{E}[EAP^*] \approx \mathcal{F}\left(\mathbb{E}\left[\widehat{V}_{\mathcal{T}}^{HUB*}\right]\right)$

Vertical extrapolation reminder: Shear modeling

Goal: Predict (in practice, simulate) short-term hourly wind speeds at hub height

$$v_{\mathcal{T}'}^{HUB} := v_t^{HUB}{}_{t \in \mathcal{T}'},$$

Power-law, aka shear, model:

$$v_{t,i}^{SIT} = v_t^{REF} \left(z_i / z_{REF} \right)^{\alpha_{h(t),m(t)}} + \sigma_{h(t),m(t)} \varepsilon_{t,i}$$
(2)

with:

- ▶ $v_{t,i}^{SIT}$ mast measures time-series at height z_i for $i \in \{1, ..., n\}$;
- $v_t^{REF} := v_{t,0}^{SIT}$ reference time-series (mast measure with height $z^{REF} := z_0$ closest to hub-height z^{HUB})
- $\varepsilon_{t,i} \stackrel{iid}{\sim} \mathcal{N}(O,1)$ the measurement / modeling errors
- ▶ "shear" parameter $\alpha_{h,m}$ and variance $\sigma_{h,m}^2$ depend on hour $h \in \{0, ..., 23\}$ and month $m \in \{1, ..., 12\}$
- OLS estimate α̂_{h,m} and σ̂²_{h,m} used in EDF-Re methodology to simulate the short-term hub-height time-series, following:

$$\widehat{v}_{\mathcal{T}'}^{HUB} = \left(v_t^{REF} \left(z^{HUB} / z^{REF} \right)^{\widehat{\alpha}_{h(t),m(t)}} \right)_{t \in \mathcal{T}'}$$
(3)

Long Term reconstruction reminder: MCP regression

Goal: Predict (or in practice, simulate) long-term wind speeds at hub height

 $v_{\mathcal{T}}^{HUB} := (\hat{v}_t^{HUB})_{t \in T},$

MCP (matrix correlate predict) linear regression model:

$$\widehat{v}_t^{HUB} = \beta_{s(t),0} + v_t^{SAT} \beta_{s(t),1} + \gamma_{s(t)} \xi_t, \qquad (4)$$

This can be estimated based on the following quantities for time-steps t in the common period $T \cap T'$:

- (\hat{v}_t^{HUB} simulated short-term wind speeds at hub height (obtained through vertical extrapolation);
- v_t^{SAT} satellite reconstruction;
- $\xi_t \stackrel{iid}{\sim} \mathcal{N}(0, 1)$ measurement / modeling error term.
- MCP coefficients β_s and variance term γ_s^2 depend on wind sector s = 1, ..., 12, computed from direction satellite proxy D^{SAT}
- OLS estimates $(\hat{\beta}_s, \hat{\gamma}_s^2)_{s=1,...,12}$ used to predict long-term wind speeds at hub-height:

$$\widehat{\nu}_{\mathcal{T}}^{HUB} = \left(\widehat{\beta}_{s(t),0} + \widehat{\beta}_{s(t),1} \nu_t^{SAT}\right)_{t \in \mathcal{T}}, \qquad (5)$$

Limits of current modeling and proposed alternative

• The reconstructed hub-height mast measures $\hat{V}_{\tau'}^{HUB}$ is modeled according to the MCP model:

$$\hat{v}_t^{HUB} = \beta_{s(t),0} + \beta_{s(t),1} v_t^{SAT} + \gamma_{s(t)} \xi_t$$

even though it has been simulated acccording to the vertical extrapolation "shear" model:

$$\widehat{v}_{t}^{HUB} = v_{t}^{REF} \left(z_{hub} / z_{ref} \right)^{\widehat{\alpha}_{h(t),m(t)}} + \sigma_{h(t),m(t)} \varepsilon_{t},$$

- It is not clear whether MCP and shear models assumptions are compatible, which may result in artifically biased results
- ► This is why, we propose to apply MCP modeling to (observed) reference time-series V^{REF}_{T'} rather than (simulated) hub-height time-series V^{hub}_{T'}, assuming that:

$$\mathbf{v}_t^{REF} = \beta_{s(t),0} + \beta_{s(t),1} \mathbf{v}_t^{SAT} + \gamma_{s(t)} \xi_t.$$

Full uncertainty model

Our final statistical model assumptions reads:

$$\begin{aligned} v_t^{REF} &= \beta_{s(t),0} + \beta_{s(t),1} v_t^{SAT} + \gamma_{s(t)} \xi_t \\ v_{t,i}^{SIT} &= v_t^{REF} \left(z_i / z_{REF} \right)^{\alpha_{h(t),m(t)}} + \sigma_{h(t),m(t)} \varepsilon_{t,i} \\ v_t^{HUB} &= v_t^{REF} \left(z_{HUB} / z_{REF} \right)^{\alpha_{h(t),m(t)}} + \sigma_{h(t),m(t)} \varepsilon_t. \end{aligned}$$

The long-term hub-height expected wind-speed is then easily predicted $\forall t \in \mathcal{T}$ as:

$$\mathbb{E}\left[\mathbf{v}_{t}^{HUB}\right] = \left(\beta_{s(t),0} + \beta_{s(t),1}\mathbf{v}_{t}^{SAT}\right) \left(\mathbf{z}_{HUB}/\mathbf{z}_{REF}\right)^{\alpha_{h(t),m(t)}}$$

Directed acyclic graph (DAG) of the wind speed statistical model

Question: Can we also model and account for $V_{T}^{SAT's}$ uncertainty?

Signal Processing Intermezzo : the spectral factorization method

Spectral factorization is concerned with the problem of generating a standard Gaussian signal having a given target autocorrelation function $\tau \to \rho^*(\tau)$. It involves designing a suitable linear filter \mathcal{H} , used afterwards on a Gaussian white noise sample $(\epsilon_t)_t$. The filter's output should have the same autocorrelation $\tau \to \rho_s(\tau)$ as the target one.

Figure: Block diagram for spectral factorization

Stationarization

The adopted model is mainly derived from this approach. To properly use it, we resorted to breaking down the underlying stochastic process $(V_t^{SAT})_t$ into a stationary process $(X_t^{stat})_t$ and a residual process $(X_t^{res})_t$.

$$V_t^{SAT} = X_t^{res} + X_t^{stat} \qquad \forall t \in \mathcal{T}$$
(6)

We imposed the following further (strong but hopefully reasonable) assumptions :

- 1. The $(X_t^{res})_t$ process is deterministic,
- 2. The process $(X_t^{stat})_t$ is a filtered Gaussian White Noise, such as : $X_t^{stat} = \mathcal{H}_t * \epsilon_t$, where \mathcal{H}_t is a linear filter and $\epsilon_t \stackrel{i.i.d}{\sim} \mathcal{N}(0, 1)$, a standard Gaussian white noise.

In practice, we used first Fourier, followed by wavelet, decompositions to identify X_t^{res} . The Fourier decomposition was also used to generate the linear filter \mathcal{H} .

Section 3

Application to case study

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Overview of case study

- We applied our methodology to obtain a bootstrap sample of size 100 from the EAP for a certain windfarm project, both with and without accounting for the uncertainty tainting the long-term satellite data V^{SAT}_T.
- The wind-speed modeling, bootstrap and spectral factorization algorithms were all coded into the experimental Python winduq package, which depending on numerous standard packages (statsmodel, scipy, pandas, openturns, ...)
- the spatial extrapolation step, enabling to propagate the hub-height, long-term wind speed time-series accross the wind farm, accounting for wake effects, and turbine power curve, was done thanks to the open-source pywake Python package.

Deseason using 5 Fourier decomposition (5 first modes)

20 / 27

Wavelet approximation at level = 5, at height = 0 (on Fourier filtered data)

Simulated vs original satellite time-series

Simulated data, for height = 0

Difference between simulated and original time-series

EAP bootstrap sample

Without UQ on long-term data

With UQ on long-term data

Section 4

Discussion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions and perspectives

What we've done so far

- Propose a fully coherent statistical model for wind-speed data, both onsite measures and long-term proxys;
- Develop a parametric bootstrap approach to quantify uncertainty on the long-term EYA of the windfarm project;
- Illustrate it on a case-study

What's yet to be done

- Resolve negative wind speed simulation issus, due to Gaussian assumption, as well as ensuing bias towards real data
- Quantify uncertainty on long-term wind direction also, not only absolute speed, for instance by considering the 2D speed vector (may solve first point!)
- Elicit priors on the uncertain parameters and calculate Bayesian predictive distribution to solve double Monte-Carlo issue
- Perform sensitivity analysis to identify most influent uncertainty sources;
- ▶ More informed long-term weather predictions, accounting e.g. for climate change

Thank You for your Attention!

