Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	0000000	00	O	O	

Change-point detection in a Poisson process

E. Lebarbier^(a) joint ongoing work with C. Dion-Blanc^(b) and S. Robin^(b)

(a) Modal'X, Université Paris Nanterre (b) Sorbonne Université

Journées MAS 2022, Rouen, 30 Août 2022

Introduction ●000	Estimation 0000000	Model selection	Application O	Ongoing works O	References

Example

Studying the activity of a volcano

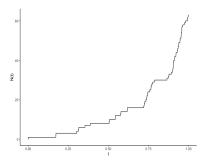
Introduction ●000	Estimation 0000000	Model selection	Application O	Ongoing works O	References

Example

Studying the activity of a volcano

► Counting the number of eruptions (events) that occurs in a time interval

Kilauea eruptions (from 1750 to 1984) [1]



Introduction	Estimation	Model selection	Application	Ongoing works	References
○●○○	0000000	00	O	O	

Poisson process

Event times:

(

$$0 < T_1 < \ldots < T_i < \ldots < T_n < 1$$

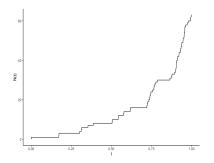
Counting process:

$$N(t) = \sum_{i=1}^{n} \mathbb{1}_{\{T_i \leq t\}}$$

Poisson process:

$$\{N(t)\}_{0 \le t \le 1} \sim PP(\lambda(t))$$

Kilauea eruptions



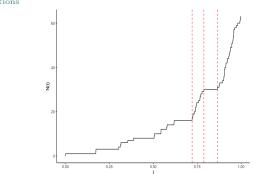
where the intensity function $\lambda(t)$ is

$$\lambda(t) = \lim_{\Delta t \to \mathbf{0}} \frac{P(N(t + \Delta t) - N(t) = 1)}{\Delta t}, \qquad E[N(s)] - E[N(t)] = \int_t^s \lambda(u) du$$

Introduction 00●0	Estimation 0000000	Model selection	Application O	Ongoing works O	References

Change-point detection

Question: find time-intervals in which events occurs more (or less) frequently



Kilauea eruptions

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000					

Change-point detection

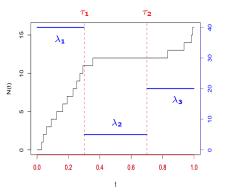
Piecewise constant intensity function.

* Change-points:

$$(\tau_0 =) 0 < \tau_1 < \ldots < \tau_{K-1} < 1 (= \tau_K)$$

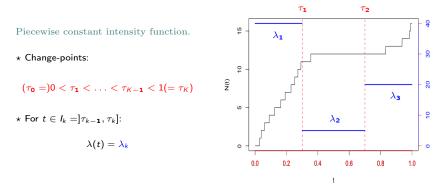
* For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \frac{\lambda_k}{\lambda_k}$$



Introduction	Estimation	Model selection	Application	Ongoing works	References
0000		00			

Change-point detection



Aim and challenge

Segmentation with K segments in a exact manner and reasonnably fast \rightarrow extension of the idea of [5, 2] to multiple change-points

▶ Model selection: choose K

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	•000000	00	O	O	

Maximum-likelihood segmentation

Property 1. Independence of disjoint time-intervals.

Log-likelihood. Denoting $\Delta N_k = N(\tau_k) - N(\tau_{k-1}) = N(I_k), \ \Delta \tau_k = \tau_k - \tau_{k-1},$ $\log p_P(N; \tau, \lambda) = \sum_{k=1}^{K} (\Delta N_k \log \lambda_k - \Delta \tau_k \ \lambda_k)$

Contrast: segment-additive (consequence of Property 1)

$$\gamma(N;\tau,\lambda) = -\log p_P(N;\tau,\lambda) = \sum_{k=1}^{K} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

Optimization problem.

$$(\widehat{ au}, \widehat{\lambda}) = \operatorname*{argmin}_{ au \in \mathcal{M}^K} \min_{\lambda} \gamma(\mathbf{N}; au, \lambda)$$

where

$$\mathcal{M}^{K} := \{ \tau = (\tau_{1}, \ldots, \tau_{K-1}) \in (0, 1)^{K-1}; 0 = \tau_{0} < \tau_{1} < \ldots < \tau_{K} = 1 \}$$

is the continuous set of all possible partitions of (0, 1) with K segments.

Introduction 0000	Estimation 0●00000	Model selection	Application O	Ongoing works O	References

Shape of the contrast

Global optimization.

$$(\hat{\tau}, \hat{\lambda}) = \underset{\tau \in \mathcal{M}^K}{\operatorname{argmin}} \min_{\lambda} \sum_{k=1}^{K} C(\Delta N_k, \Delta \tau_k, \lambda_k) = \underset{\tau \in \mathcal{M}^K}{\operatorname{argmin}} \sum_{k=1}^{K} \min_{\lambda_k} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

Introduction 0000	Estimation 0●00000	Model selection	Application O	Ongoing works O	References

Shape of the contrast

Global optimization.

$$(\hat{\tau}, \hat{\lambda}) = \underset{\tau \in \mathcal{M}^{K}}{\operatorname{argmin}} \min_{\lambda} \sum_{k=1}^{K} C(\Delta N_{k}, \Delta \tau_{k}, \lambda_{k}) = \underset{\tau \in \mathcal{M}^{K}}{\operatorname{argmin}} \sum_{k=1}^{K} \min_{\lambda_{k}} C(\Delta N_{k}, \Delta \tau_{k}, \lambda_{k})$$

1. Optimization wrt $\lambda.$

$$\widehat{\lambda}_k = \frac{\Delta N_k}{\Delta \tau_k}$$
 and $\widehat{\gamma}(N; \tau) = \gamma(N; \tau, \widehat{\lambda}) = \sum_{k=1}^K \underbrace{C(\Delta N_k, \Delta \tau_k, \widehat{\lambda}_k)}_{\widehat{C}(\Delta N_k, \Delta \tau_k)}$

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	0●00000	00	O	O	

Shape of the contrast

Global optimization.

$$(\hat{\tau}, \hat{\lambda}) = \underset{\tau \in \mathcal{M}^{K}}{\operatorname{argmin}} \min_{\lambda} \sum_{k=1}^{K} C(\Delta N_{k}, \Delta \tau_{k}, \lambda_{k}) = \underset{\tau \in \mathcal{M}^{K}}{\operatorname{argmin}} \sum_{k=1}^{K} \min_{\lambda_{k}} C(\Delta N_{k}, \Delta \tau_{k}, \lambda_{k})$$

1. Optimization wrt $\lambda.$

$$\widehat{\lambda}_k = \frac{\Delta N_k}{\Delta \tau_k}$$
 and $\widehat{\gamma}(N; \tau) = \gamma(N; \tau, \widehat{\lambda}) = \sum_{k=1}^{K} \underbrace{C(\Delta N_k, \Delta \tau_k, \widehat{\lambda}_k)}_{\widehat{C}(\Delta N_k, \Delta \tau_k)}$

2. Optimization wrt τ .

$$\widehat{\tau} = \operatorname*{argmin}_{\tau \in \mathcal{M}^{K}} \widehat{\gamma}(\mathsf{N}; \tau) = \operatorname*{argmin}_{\tau \in \mathcal{M}^{K}} \sum_{k=1}^{K} \widehat{C}(\Delta \mathsf{N}_{k}, \Delta \tau_{k})$$

 $\rightarrow \widehat{\gamma}(N; \tau)$ is not convex nor even continuous wrt τ .

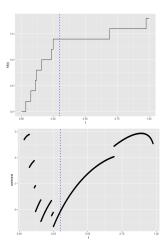
Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	00●0000	00	O	O	

Illustration: one change-point [5, 2]

• $\widehat{\gamma}(N; \tau)$ is concave in τ in each interevent interval $[T_i, T_{i+1}]$.

▶ The optimal change-point $\hat{\tau}$ in $[T_i, T_{i+1}]$ is one of T_i, T_{i+1}^-

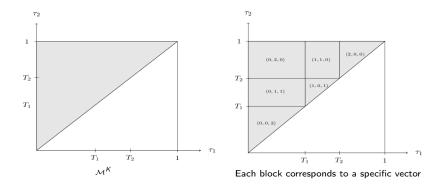
 $\widehat{\tau} \subset \{T_1^-, T_1, T_2^-, T_2, \dots, T_n^-, T_n\}$



Introduction	Estimation	Model selection	Application O	Ongoing works O	References

Extension to multiple change-points?

Example: n = 2, K = 3 (2 change-points)



 $\Delta N = (\Delta N_1, \Delta N_2, \Delta N_3)$

Introduction	Estimation	Model selection	Application	Ongoing works	References
	0000000				

Partitioning the segmentation space

Partitioning the number of events. Define

$$\mathcal{N}^{K} := \{ \nu \in \mathbb{N}^{K} : \sum_{k=1}^{K} \nu_{k} = n \},$$

the set of all possible repartitions of the n events into the K segments.

Partitioning the segmentation space. For $\nu \in \mathcal{N}^{K}$, define $\mathcal{M}_{\nu}^{K}(N) := \{\tau \in \mathcal{M}^{K} : \Delta N_{k} = \nu_{k}\}$ and

$$\mathcal{M}^{K} = \bigcup_{\nu \in \mathcal{N}^{K}} \mathcal{M}_{\nu}^{K}(N)$$

Introduction	Estimation	Model selection	Application	Ongoing works	References
	0000000				

Partitioning the segmentation space

Partitioning the number of events. Define

$$\mathcal{N}^{K} := \{ \nu \in \mathbb{N}^{K} : \sum_{k=1}^{K} \nu_{k} = n \},$$

the set of all possible repartitions of the n events into the K segments.

Partitioning the segmentation space. For $\nu \in \mathcal{N}^{K}$, define $\mathcal{M}_{\nu}^{K}(N) := \{\tau \in \mathcal{M}^{K} : \Delta N_{k} = \nu_{k}\}$ and

$$\mathcal{M}^{K} = \bigcup_{\nu \in \mathcal{N}^{K}} \mathcal{M}_{\nu}^{K}(N)$$

Optimization problem: $\min_{\tau \in \mathcal{M}^{K}} \widehat{\gamma}(N; \tau) = \min_{\nu \in \mathcal{N}^{K}} \min_{\tau \in \mathcal{M}^{K}_{\mathcal{V}}(N)} \widehat{\gamma}(N; \tau)$

Introduction	Estimation	Model selection	Application	Ongoing works	References
	0000000				

Partitioning the segmentation space

Partitioning the number of events. Define

$$\mathcal{N}^{K} := \{ \nu \in \mathbb{N}^{K} : \sum_{k=1}^{K} \nu_{k} = n \},$$

the set of all possible repartitions of the n events into the K segments.

Partitioning the segmentation space. For $\nu \in \mathcal{N}^{K}$, define $\mathcal{M}_{\nu}^{K}(N) := \{\tau \in \mathcal{M}^{K} : \Delta N_{k} = \nu_{k}\}$ and

$$\mathcal{M}^{K} = \bigcup_{\nu \in \mathcal{N}^{K}} \mathcal{M}_{\nu}^{K}(N)$$

Optimization problem: $\min_{\tau \in \mathcal{M}^K} \widehat{\gamma}(N; \tau) = \min_{\nu \in \mathcal{N}^K} \min_{\tau \in \mathcal{M}^K_{\nu}(N)} \widehat{\gamma}(N; \tau)$

Theorem

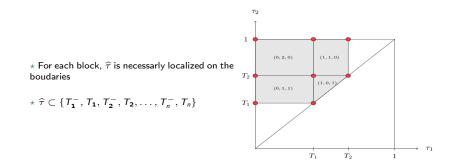
 $\widehat{\gamma}(\mathsf{N}; \tau)$ is concave wrt $\tau \in \mathcal{M}_{\nu}^{\mathsf{K}}(\mathsf{N})$, thus

$$\hat{\tau} = \operatorname*{argmin}_{\tau \in \mathcal{M}_{\mathcal{V}}^{\mathcal{K}}(N)} \hat{\gamma}(N;\tau) \in \{T_{\nu_{1}}, T_{\nu_{1}+1}^{-}\} \times \{T_{\nu_{1}+\nu_{2}}, T_{\nu_{1}+\nu_{2}+1}^{-}\} \times \ldots \times \{T_{\nu_{1}+\ldots\nu_{K}}, T_{\nu_{1}+\ldots\nu_{K}}^{-}\}$$

 \rightarrow always true for any contrast s.t. $\widehat{C}(\Delta N_k, \Delta \tau_k)$ is concave wrt $\Delta \tau_k$

Introduction	Estimation	Model selection	Application	Ongoing works	References
	0000000				

Consequence: a discrete optimization problem



 $\widehat{\tau}$ can be obtained by the the usual Dynamic Programming algorithm on the 2n possible change-points

$$tp = \{ T_1^-, T_1, , T_2^-, T_2, \dots, T_n^-, T_n \},\$$

with complexity $\mathcal{O}((2n)^2 K)$.

Introduction 0000	Estimation 000000●	Model selection	Application O	Ongoing works O	References

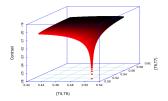
Alternative contrast

Undesirable Poisson likelihood solution:

- ▶ tp includes segments with length 0 (e.g. $I_k = [T_i^-, T_i], \Delta N_k = 1$),
- ▶ ... which are optimal for the log-likelihood contrast: $\widehat{C}(\Delta N_k = 1, \Delta au_k = 0) = -\infty$

For K = 3 and $\nu = (5, 1, n - 6)$, the optimal change-points in $\mathcal{M}_{\nu}^{K}(N)$ are

 $(\widehat{\tau_1}, \widehat{\tau_2}) = (T_6^-, T_6)$



Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	000000●	00	O	O	

Alternative contrast

Poisson-Gamma model. For each segment $1 \le k \le K$:

$$\lambda_k \sim Gam(a, b), \quad \{N(t)\}_{t \in I_k} | \lambda_k \sim PP(\lambda_k)$$

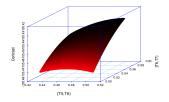
which gives

$$\begin{aligned} \gamma_{(a,b)}(N;\tau) &= -\log p_{PG}(N;\tau,a,b) = -\log \int p(N,\lambda;\tau,a,b) \, \mathrm{d}\lambda \\ &= \operatorname{Cst} + \sum_{k=1}^{K} \left((a + \Delta N_k) \log \left(b + \Delta \tau_k \right) - \log \Gamma(a + \Delta N_k) \right) \right) \end{aligned}$$

 \rightarrow enjoys the concavity property, but avoids segments with null length.

The optimal change-points in $\mathcal{M}^K_{\nu}(N)$ are

$$(\widehat{\tau_1}, \widehat{\tau_2}) = (T_5, T_6)$$



$$a = n^{3/2}, b = n^{1/2}$$

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	0000000	●○	O	O	

Property 2. The sum of two independent Poisson processes is a Poisson process.

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	0000000	●○	O	O	

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

$$\blacktriangleright \{N(t)\}_t \sim PP(\lambda(t))$$

· · · · · · · · · · · · · · ·

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	0000000	●○	O	O	

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

 $\blacktriangleright \{N(t)\}_t \sim PP(\lambda(t))$

Sampling the event times with probability f

$$\{N^{L}(t)\}_{t} \sim PP(\underbrace{\lambda^{L}(t)}_{f\lambda(t)}), \qquad \{N^{T}(t)\}_{t} \sim PP(\underbrace{\lambda^{T}(t)}_{(\mathbf{1}-f)\lambda(t)}), \qquad \{N^{L}(t)\}_{t} \perp \{N^{T}(t)\}_{t}$$

...

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	0000000	●○	O	O	

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

 $\blacktriangleright \{N(t)\}_t \sim PP(\lambda(t))$

Sampling the event times with probability f

$$\{N^{L}(t)\}_{t} \sim PP(\underbrace{\lambda^{L}(t)}_{f\lambda(t)}), \qquad \{N^{T}(t)\}_{t} \sim PP(\underbrace{\lambda^{T}(t)}_{(\mathbf{1}-f)\lambda(t)}), \qquad \{N^{L}(t)\}_{t} \perp \{N^{T}(t)\}_{t}$$

If λ(t) is piecewise constant with change-points τ = (τ_k), then λ^L(t) and λ^T(t) are piecewise constant with same change-points (τ_k)

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	0000000	○●	O	O	

Cross validation

Cross validation. For $1 \leq K \leq K_{max}$,

• Repeat for $1 \le b \le B$:

1. Sample the event times to form $\{N^{L,b}(t)\}_t$ (learn) and $\{N^{T,b}(t)\}_t$ (test)

Poisson contrast.

Poisson-Gamma contrast.

- 2. Estimate $\tau^{L,b}$ and $\lambda^{L,b}$ using $\gamma(N^{L,b}; \tau, \lambda) = 2$. Estimate $\tau^{L,b}$ using $\gamma_{(a^L, b^L)}(N^{L,b}; \tau)$
- 3. Compute $\gamma_{K}^{T,b} = \gamma(N^{T,b}; \hat{\tau}^{L,b}, \frac{1-f}{f}\hat{\lambda}^{L,b}) \mid 3$. Compute $\gamma_{K}^{T,b} = \gamma_{(a^{T},b^{T})}(N^{T,b}; \hat{\tau}^{L,b})$

Compute:

$$\bar{\gamma}_{\mathcal{K}} = rac{1}{B} \sum_{b=1}^{B} \gamma_{\mathcal{K}}^{\mathcal{T},b}$$

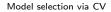
Choose K as

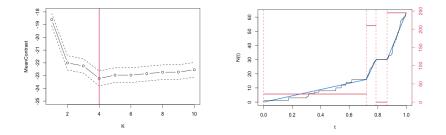
$$\widehat{K} = \underset{\kappa}{\operatorname{argmin}} \ \overline{\gamma}_{\kappa}$$

Introduction	Estimation	Model selection	Application	Ongoing works	References
0000	0000000	00	●	O	

Kilauea eruptions

Poisson-Gamma contrast. Cross validation with $a^{L} = 1, b^{L} = 1/n^{L}$ and $a^{T} = 1, b^{T} = 1/n^{T}$.





Introduction 0000	Estimation 0000000	Model selection	Application O	Ongoing works ●	References

Ongoing and future works

Ongoing works

- Simulation study
- Marked Poisson Process $MPP(\lambda(t), \mu(t))$.
 - * $\{N(t)\}_{0 \le t \le 1} \sim PP(\lambda(t))$, and at each $T_i: Y_i \sim \mathcal{F}(\mu(T_i))$
 - * Works the same way, provided that concavity holds.

Future works on PP and MPP

- Model selection. Developp a theoretically grounded model selection criterion
- Segmentation/clustering. Adapted for recurrent events on one process
 - * Each segment belong to a class $1 \le q \le Q$ with probability π_q and intensity $\lambda_k = \lambda_q$
 - * Combination of EM and DP algorithms as proposed by [4]

Extension to Hawkes process.

Introduction	Estimation 0000000	Model selection	Application O	Ongoing works O	References		
					i i i i i i i i i i i i i i i i i i i		
	Chih-Hsiang Ho and Moinak Bhaduri, A quantitative insight into the dependence dynamics of the kilauea						
	and mauna loa volcanoes, hawaii, Mathematical Geosciences 49 (2017), no. 7, 893–911.						
	Qing Li, Recurrent-event models for change-points detection, Ph.D. thesis, Virginia Tech, 2015.						
	Qing Li, Kehui Yao, and Xinyu Zhang, A change-point detection and clustering method in the						
	recurrent-event context, Journal of Statistical Computation and Simulation 90 (2020), no. 6, 1131–1149.						
	Franck Picard, Stéphane Robin, E Lebarbier, and J-J Daudin, A segmentation/clustering model for the						
_	analysis of array cgh data, I	Biometrics 63 (2007), no	. 3, 758–766.				
	Tae Young Yang and Lynn		· ·				
	multiple changepoints, Jour	nal of Computational an	d Graphical Statistics	10 (2001), no. 4, 772-785			