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Introduction
€000

Example

Kilauea eruptions (from 1750 to 1984) [1]

» Studying the activity of a volcano

» Counting the number of eruptions
(events) that occurs in a time interval
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Poisson process

Kilauea eruptions

Event times:
w

0<Th <...<Ti<...<Tp <1

Counting process:

N(t) = Uyr<o
i=1

N

Poisson process:
o ™

{N(t)}o<r<1 ~ PP(A(1))

where the intensity function A(t) is
M0 = im POEEEROZRO =3 o) - e = [
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Change-point detection

Question: find time-intervals in which events occurs more (or less) frequently

Kilauea eruptions
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Change-point detection

o
<
Piecewise constant intensity function. 2 A
* Change-points: 3
9 -
= °
(To=)0< 71 < ... < 7Kk—1 < 1(=7k) z «
o -
[ o
* For t € Iy =]7T—1, 7« -
)\(t) = Ak o - o
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Aim and challenge

» Segmentation with K segments in a exact manner and reasonnably fast — extension of the
idea of [5, 2] to multiple change-points

» Model selection: choose K
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Maximum-likelihood segmentation

Property 1. Independence of disjoint time-intervals.

Log-likelihood. Denoting ANy, = N(7x) — N(7xk—1) = N(Ix), ATk = Tk — Tk—1,
K
log pp(N; 7, A) = > (AN log Ak — ATk Ak)

k=1

Contrast: segment-additive (consequence of Property 1)

K

Y(N;7,X) = —log pp(N; 7, A) = > C(ANk, ATy, Ae)
k=1

Optimization problem.
(7, A) = argmin min y(N; 7, \)
remK A
where « P
M" i={r=(m1,...,7k-1) € (0,1) lo0=to< 1 <...<7Tk =1}

is the continuous set of all possible partitions of (0, 1) with K segments.
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Shape of the contrast

Global optimization.

K K
(7, X) = argmin min Z C(ANg, ATk, A¢) = argmin Z min C(ANk, A7k, Ak)
remk N i3 remK 353 Mk
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Shape of the contrast

Global optimization.

K K
(7, X) = argmin min Z C(ANg, ATk, A¢) = argmin Z min C(ANk, A7k, Ak)
remK N 4 remK o3 Mk
1. Optimization wrt A
K
~ AN, -~ ~
M= o and  F(NiT) =N, N) = Y C(ANK, Ay, Xi)
(AN ,ATY)
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Shape of the contrast

Global optimization

R K
(7, A) = a

K
rgmm mm Z C(AN, AT, M) = argmm Z mm C(AN, ATk, Ak)
remk k=1 remK 15
1. Optimization wrt A
AN, K -
XNe=""5 and  F(Ni7) =N, ) = Y C(ANK, Ay, X)
(AN ,ATY)
2. Optimization wrt 7

rgmm F(N;T) = argmm Z C(AN, ATy)
remK remK 11
— A(N; 7) is not convex nor even continuous wrt T
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[llustration: one change-point 5, 2]

» 7J(N;T) is concave in T in each inter-
event interval [T;, Tiyq[.

» The optimal change-point 7 in [T;, Tita[

is one of T;, T

> FC{Ty, T1, T3, T2y..., T, Ts}

contast
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Extension to multiple change-points?

Example: n =2, K =3 (2 change-points)

T2 T2
1 1
@.0,0)
©.2,0) 1,0
> + Ts
10,1
(0,1,1)
Ty T
©.0,2)
71 T
T T, 1 i T 1
K o
M Each block corresponds to a specific vector

AN = (AN, ANz, ANs)
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Partitioning the segmentation space

Partitioning the number of events. Define
K K K
N ={veN :Zuk=n},
k=1

the set of all possible repartitions of the n events into the K segments.

Partitioning the segmentation space. For v € NK, define Ml‘f(N) ={7r € MK ANg = v} and

K K
MmE= | Mo
veNK
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[e]o]ee] lele)

Partitioning the segmentation space

Partitioning the number of events. Define
K K K
N ={veN :Zuk=n},
k=1
the set of all possible repartitions of the n events into the K segments.
Partitioning the segmentation space. For v € NK, define Ml‘f(N) ={7r € MK ANg = v} and

ME = M)

veNK
Optimization problem: min F(N;7)= min min  F(N; 1)
remK veNKremK(n)

10/16

E. Lebarbier



Estimation

[e]o]ee] lele)

Partitioning the segmentation space

Partitioning the number of events. Define
K K K
N ={veN :Zuk=n},
k=1
the set of all possible repartitions of the n events into the K segments.

Partitioning the segmentation space. For v € NK, define ./\/l:f(N) ={7r € MK ANg = v} and

ME = M)

veNK
Optimization problem: min F(N;7)= min min  F(N; T)
remK veNKremK(n)

(N; 7) is concave wrt T € M',f(N), thus

7 = argmin (V7)€ {Tug, Ty 2} X {Togtvas Togyuprad X oo X {Togt g Tug oy b
TeME(N)

— always true for any contrast s.t. C(ANj, A7) is concave wrt ATy
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Consequence: a discrete optimization problem

(0,2,0)

* For each block, T is necessarly localized on the

(1,1,0)

boudaries T

(0,1,1)

*TCATL T, Ty, Ty, T, Tad i

(1,0,1

T

T can be obtained by the the usual Dynamic Programming algorithm on the 2n possible

change-points

tp=A{Ty , T1,, 75, T2,..., T, , Tu},

with complexity O((2n)2K).
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Alternative contrast

Undesirable Poisson likelihood solution:
> tp includes segments with length 0 (e.g. Iy =]T;", Tj], AN, =1),

» ... which are optimal for the log-likelihood contrast: (.A'(AN;< =1,A71y =0) = —c0

For K =3 and v = (5,1, n — 6), the opti-
mal change-points in Ml’f(N) are

Contrast

(71,72) = (Tg + Te)

6 25w w2 a W o
[m6.77)
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Alternative contrast

Poisson-Gamma model. For each segment 1 < k < K:
Ak ~ Gam(a, b),  {N(t)}eey, [Xk ~ PP(X)

which gives

'Y(a,b)(N? 7) = —logppg(N;T,a,b)=— Iog/p(N, A; 7, a, b) dA
K
= Cst+ > ((a+ANg)log(b+ Ary) — logl(a+ ANy))
k=1

— enjoys the concavity property, but avoids segments with null length.

The optimal change-points in M:f(N) are

(71,72) = (Ts, Te)

[15.76)

a=n3/2 - pl/2
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Model selection via cross validation

Property 2. The sum of two independent Poisson processes is a Poisson process.
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Model selection
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Model selection via cross validation

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

> {N()}e ~ PP(A(Y))
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Model selection
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Model selection via cross validation

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

> {N(8)}e ~ PP(A(Y))

P Sampling the event times with probability f
(NS}~ PPOM(E),  {NT ()}~ PPCAT(1) ), {NS(8)}e L {NT (D)}
N~ N~

FA(E) (1—H)A(t)
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Model selection
[ Ie]

Model selection via cross validation

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

> {N(t)}e ~ PP(X(t))

P> Sampling the event times with probability f

{N"()}e ~ PPN (1)), {NT(6)}e ~ PP AT(E) ), {N' (D)} LA{NT(8)}e
N~ N~
FA(t) (1—=F)X(t)

> If A(t) is piecewise constant with change-points T = (1), then AL(t) and A7 (t) are
piecewise constant with same change-points (7%)
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Cross validation

Cross validation. For 1 < K < Kmax,

> Repeat for 1 < b < B:
1. Sample the event times to form {N“2(t)} (learn) and {NT*2(¢)}. (test)

Poisson contrast. Poisson-Gamma contrast.

2. Estimate 75% and Ab? using 'y(NL’b; T, A) 2. Estimate 75?2 using Vol bL)(NL’b; T)

5. Compute v]* = y(NT4; 718, 1ER05) | 5. Compute 47" = 7,7 (N7 4 757
> Compute:
B
A 1 STb
= K
B3

Choose K as
K = argmin g
K
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Application

Kilauea eruptions

Poisson-Gamma contrast. Cross validation with at = 1, bt = l/nL anda’ =1,b" = l/nT.

Model selection via CV Resulting segmentation
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Ongoing and future works

Ongoing works
P Simulation study

P> Marked Poisson Process MPP(X(t), u(t)).

* {N(t)}o<t<1 ~ PP(A(t)), and at each T;: Y; ~ F(u(T;))
* Works the same way, provided that concavity holds.
Future works on PP and MPP
P> Model selection. Developp a theoretically grounded model selection criterion

P Segmentation/clustering. Adapted for recurrent events on one process

* Each segment belong to a class 1 < g < Q with probability 4 and intensity A\, = A\q
+ Combination of EM and DP algorithms as proposed by [4]

Extension to Hawkes process.

Change point in Poisson process 16/16



[
E
B
[
B

References

Chih-Hsiang Ho and Moinak Bhaduri, A quantitative insight into the dependence dynamics of the kilauea

and mauna loa vol. , hawaii, Mat} ical G iences 49 (2017), no. 7, 893—911.

Qing Li, Recur t dels for change-points d. ion, Ph.D. thesis, Virginia Tech, 2015.

Qing Li, Kehui Yao, and Xinyu Zhang, A change-point detection and clustering method in the

recurrent-event context, Journal of Statistical Computation and Simulation 90 (2020), no. 6, 1131-11409.
Franck Picard, Stéphane Robin, E Lebarbier, and J-J Daudin, A segmentation/clustering model for the
analysis of array cgh data, Biometrics 63 (2007), no. 3, 758-766.

Tae Young Yang and Lynn Kuo, B ian binary ion pr dure for a poi: process with

multiple changepoints, Journal of Computational and Graphical Statistics 10 (2001), no. 4, 772-785.



	Introduction
	Estimation
	Model selection
	Application
	Ongoing works
	References

