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Example

I Studying the activity of a volcano

I Counting the number of eruptions
(events) that occurs in a time interval
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Example

I Studying the activity of a volcano

I Counting the number of eruptions
(events) that occurs in a time interval

Kilauea eruptions (from 1750 to 1984) [1]
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Poisson process

Event times:

0 < T1 < . . . < Ti < . . . < Tn < 1

Counting process:

N(t) =
n∑

i=1
1l{Ti≤t}

Poisson process:

{N(t)}0≤t≤1 ∼ PP(λ(t))

Kilauea eruptions

where the intensity function λ(t) is

λ(t) = lim
∆t→0

P(N(t + ∆t)− N(t) = 1)

∆t
, E [N(s)]− E [N(t)] =

∫ s

t

λ(u)du
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Change-point detection

Question: find time-intervals in which events occurs more (or less) frequently

Kilauea eruptions
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Change-point detection

Piecewise constant intensity function.

? Change-points:

(τ0 =)0 < τ1 < . . . < τK−1 < 1(= τK )

? For t ∈ Ik =]τk−1, τk ]:

λ(t) = λk

τ1 τ2

λ1

λ2

λ3

Aim and challenge
I Segmentation with K segments in a exact manner and reasonnably fast → extension of the
idea of [5, 2] to multiple change-points

I Model selection: choose K
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Maximum-likelihood segmentation

Property 1. Independence of disjoint time-intervals.

Log-likelihood. Denoting ∆Nk = N(τk )− N(τk−1) = N(Ik ), ∆τk = τk − τk−1,

log pP (N; τ, λ) =
K∑

k=1

(∆Nk log λk −∆τk λk )

Contrast: segment-additive (consequence of Property 1)

γ(N; τ, λ) = − log pP (N; τ, λ) =
K∑

k=1

C(∆Nk ,∆τk , λk )

Optimization problem.
(τ̂ , λ̂) = argmin

τ∈MK
min
λ
γ(N; τ, λ)

where
MK := {τ = (τ1, . . . , τK−1) ∈ (0, 1)K−1; 0 = τ0 < τ1 < . . . < τK = 1}

is the continuous set of all possible partitions of (0, 1) with K segments.

E. Lebarbier Change point in Poisson process 6/16



Introduction Estimation Model selection Application Ongoing works References

Shape of the contrast

Global optimization.

(τ̂ , λ̂) = argmin
τ∈MK

min
λ

K∑
k=1

C(∆Nk ,∆τk , λk ) = argmin
τ∈MK

K∑
k=1

min
λk

C(∆Nk ,∆τk , λk )

1. Optimization wrt λ.

λ̂k =
∆Nk

∆τk
and γ̂(N; τ) = γ(N; τ, λ̂) =

K∑
k=1

C(∆Nk ,∆τk , λ̂k )︸ ︷︷ ︸
Ĉ(∆Nk ,∆τk )

2. Optimization wrt τ .

τ̂ = argmin
τ∈MK

γ̂(N; τ) = argmin
τ∈MK

K∑
k=1

Ĉ(∆Nk ,∆τk )

→ γ̂(N; τ) is not convex nor even continuous wrt τ .
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Illustration: one change-point [5, 2]

I γ̂(N; τ) is concave in τ in each inter-
event interval [Ti ,Ti+1[.

I The optimal change-point τ̂ in [Ti ,Ti+1[

is one of Ti ,T
−
i+1

I τ̂ ⊂ {T−1 ,T1,T
−
2 ,T2, . . . ,T

−
n ,Tn}
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Extension to multiple change-points?

Example: n = 2, K = 3 (2 change-points)

MK Each block corresponds to a specific vector

∆N = (∆N1,∆N2,∆N3)
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Partitioning the segmentation space
Partitioning the number of events. Define

NK := {ν ∈ NK :
K∑

k=1
νk = n},

the set of all possible repartitions of the n events into the K segments.

Partitioning the segmentation space. For ν ∈ NK , defineMK
ν (N) := {τ ∈ MK : ∆Nk = νk} and

MK =
⋃

ν∈NK

MK
ν (N)

Optimization problem: min
τ∈MK

γ̂(N; τ) = min
ν∈NK

min
τ∈MK

ν (N)
γ̂(N; τ)

Theorem

γ̂(N; τ) is concave wrt τ ∈ MK
ν (N), thus

τ̂ = argmin
τ∈MK

ν (N)

γ̂(N; τ) ∈ {Tν1 ,T
−
ν1+1} × {Tν1+ν2 ,T

−
ν1+ν2+1} × . . .× {Tν1+...νK

,T−ν1+...νK
}

→ always true for any contrast s.t. Ĉ(∆Nk ,∆τk ) is concave wrt ∆τk
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Consequence: a discrete optimization problem

? For each block, τ̂ is necessarly localized on the
boudaries

? τ̂ ⊂ {T−1 ,T1,T
−
2 ,T2, . . . ,T

−
n ,Tn}

τ̂ can be obtained by the the usual Dynamic Programming algorithm on the 2n possible
change-points

tp = {T−1 ,T1, ,T
−
2 ,T2, . . . ,T

−
n ,Tn},

with complexity O((2n)2K).
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Alternative contrast

Undesirable Poisson likelihood solution:

I tp includes segments with length 0 (e.g. Ik =]T−i ,Ti ], ∆Nk = 1),

I . . . which are optimal for the log-likelihood contrast: Ĉ(∆Nk = 1,∆τk = 0) = −∞

For K = 3 and ν = (5, 1, n− 6), the opti-
mal change-points inMK

ν (N) are

(τ̂1, τ̂2) = (T−6 ,T6)
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Alternative contrast

Poisson-Gamma model. For each segment 1 ≤ k ≤ K :

λk ∼ Gam(a, b), {N(t)}t∈Ik |λk ∼ PP(λk )

which gives

γ(a,b)(N; τ) = − log pPG (N; τ, a, b) = − log

∫
p(N, λ; τ, a, b) dλ

= Cst +
K∑

k=1
((a + ∆Nk ) log (b + ∆τk )− log Γ(a + ∆Nk ))

→ enjoys the concavity property, but avoids segments with null length.

The optimal change-points inMK
ν (N) are

(τ̂1, τ̂2) = (T5,T6)

a = n3/2, b = n1/2
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Model selection via cross validation

Property 2. The sum of two independent Poisson processes is a Poisson process.
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Model selection via cross validation

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

I {N(t)}t ∼ PP(λ(t))
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Model selection via cross validation

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

I {N(t)}t ∼ PP(λ(t))

I Sampling the event times with probability f

{NL(t)}t ∼ PP(λL(t)︸ ︷︷ ︸
fλ(t)

), {NT (t)}t ∼ PP( λT (t)︸ ︷︷ ︸
(1−f )λ(t)

), {NL(t)}t ⊥ {NT (t)}t
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Model selection via cross validation

Property 2. The sum of two independent Poisson processes is a Poisson process.

Consequence

I {N(t)}t ∼ PP(λ(t))

I Sampling the event times with probability f

{NL(t)}t ∼ PP(λL(t)︸ ︷︷ ︸
fλ(t)

), {NT (t)}t ∼ PP( λT (t)︸ ︷︷ ︸
(1−f )λ(t)

), {NL(t)}t ⊥ {NT (t)}t

I If λ(t) is piecewise constant with change-points τ = (τk ), then λL(t) and λT (t) are
piecewise constant with same change-points (τk )

E. Lebarbier Change point in Poisson process 13/16



Introduction Estimation Model selection Application Ongoing works References

Cross validation

Cross validation. For 1 ≤ K ≤ Kmax,

I Repeat for 1 ≤ b ≤ B:

1. Sample the event times to form {NL,b(t)}t (learn) and {NT,b(t)}t (test)

Poisson contrast. Poisson-Gamma contrast.

2. Estimate τL,b and λL,b using γ(NL,b ; τ, λ) 2. Estimate τL,b using γ
(aL,bL)

(NL,b ; τ)

3. Compute γT,b
K = γ(NT,b ; τ̂L,b, 1−f

f λ̂L,b) 3. Compute γT,b
K = γ

(aT ,bT )
(NT,b ; τ̂L,b)

I Compute:

γ̄K =
1
B

B∑
b=1

γ
T,b
K

Choose K as
K̂ = argmin

K
γ̄K
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Kilauea eruptions

Poisson-Gamma contrast. Cross validation with aL = 1, bL = 1/nL and aT = 1, bT = 1/nT .

Model selection via CV Resulting segmentation
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Ongoing and future works

Ongoing works

I Simulation study

I Marked Poisson Process MPP(λ(t), µ(t)).

? {N(t)}0≤t≤1 ∼ PP(λ(t)), and at each Ti : Yi ∼ F(µ(Ti ))

? Works the same way, provided that concavity holds.

Future works on PP and MPP

I Model selection. Developp a theoretically grounded model selection criterion

I Segmentation/clustering. Adapted for recurrent events on one process

? Each segment belong to a class 1 ≤ q ≤ Q with probability πq and intensity λk = λq

? Combination of EM and DP algorithms as proposed by [4]

Extension to Hawkes process.
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