Risk minimization from adaptively collected data:

guarantees for policy learning

Antoine Chambaz ${ }^{1}$, with
A. Bibaut ${ }^{2}$, N. Kallus ${ }^{2,3}$, M. Dimakopoulou ${ }^{2}$, M. J. van der Laan ${ }^{4}$
${ }^{1}$ MAP5 (UMR CNRS 8145), Université Paris Cité
${ }^{2}$ Netflix
${ }^{3}$ Cornell University
${ }^{4}$ University of California, Berkeley

August 30th, 2022
Journées MAS 2022
"Au delà de l'apprentissage séquentiel pour de meilleures prises de décisions"

Context: adaptive experiment

- $X_{1}, \ldots, X_{t}, \ldots$ iid, observed sequentially
each $X_{t} \in \mathcal{X}$, a context of action

Context: adaptive experiment

- $X_{1}, \ldots, X_{t}, \ldots$ iid, observed sequentially each $X_{t} \in \mathcal{X}$, a context of action
- $\left(Y_{1}(a)\right)_{a \in \mathcal{A}}, \ldots,\left(Y_{t}(a)\right)_{a \in \mathcal{A}}, \ldots$ iid,hidden
each $Y_{t}(a)$ the reward (in context X_{t}) of action a, one among $|\mathcal{A}|<\infty$ possible actions

Context: adaptive experiment

- $X_{1}, \ldots, X_{t}, \ldots$ iid, observed sequentially each $X_{t} \in \mathcal{X}$, a context of action
- $\left(Y_{1}(a)\right)_{a \in \mathcal{A}}, \ldots,\left(Y_{t}(a)\right)_{a \in \mathcal{A}}, \ldots$ iid,hidden each $Y_{t}(a)$ the reward (in context X_{t}) of action a, one among $|\mathcal{A}|<\infty$ possible actions
- at every time $t \geq 1, A_{t} \sim g_{t}\left(\cdot \mid X_{t}\right)$, observed, yields the observed reward $Y_{t}=Y_{t}\left(A_{t}\right)$, where
- the law g_{t} is built based on $\left(X_{1}, A_{1}, Y_{1}\right), \ldots,\left(X_{t-1}, A_{t-1}, Y_{t-1}\right)$ and known to us
- $A_{t} \perp Y_{t}(a) \mid X_{t}$ for all $a \in \mathcal{A}$ - "randomization"

Context: adaptive experiment

- $X_{1}, \ldots, X_{t}, \ldots$ iid, observed sequentially each $X_{t} \in \mathcal{X}$, a context of action
- $\left(Y_{1}(a)\right)_{a \in \mathcal{A}}, \ldots,\left(Y_{t}(a)\right)_{a \in \mathcal{A}}, \ldots$ iid, hidden each $Y_{t}(a)$ the reward (in context X_{t}) of action a, one among $|\mathcal{A}|<\infty$ possible actions
- at every time $t \geq 1, A_{t} \sim g_{t}\left(\cdot \mid X_{t}\right)$, observed, yields the observed reward $Y_{t}=Y_{t}\left(A_{t}\right)$, where
- the law g_{t} is built based on $\left(X_{1}, A_{1}, Y_{1}\right), \ldots,\left(X_{t-1}, A_{t-1}, Y_{t-1}\right)$ and known to us
- $A_{t} \perp Y_{t}(a) \mid X_{t}$ for all $a \in \mathcal{A}$ - "randomization"

Useful for

Context: adaptive experiment

- $X_{1}, \ldots, X_{t}, \ldots$ iid, observed sequentially each $X_{t} \in \mathcal{X}$, a context of action
- $\left(Y_{1}(a)\right)_{a \in \mathcal{A}}, \ldots,\left(Y_{t}(a)\right)_{a \in \mathcal{A}}, \ldots$ iid, hidden each $Y_{t}(a)$ the reward (in context X_{t}) of action a, one among $|\mathcal{A}|<\infty$ possible actions
- at every time $t \geq 1, A_{t} \sim g_{t}\left(\cdot \mid X_{t}\right)$, observed, yields the observed reward $Y_{t}=Y_{t}\left(A_{t}\right)$, where
- the law g_{t} is built based on $\left(X_{1}, A_{1}, Y_{1}\right), \ldots,\left(X_{t-1}, A_{t-1}, Y_{t-1}\right)$ and known to us
- $A_{t} \perp Y_{t}(a) \mid X_{t}$ for all $a \in \mathcal{A}$ - "randomization"

Useful for regret control

Context: adaptive experiment

- $X_{1}, \ldots, X_{t}, \ldots$ iid, observed sequentially each $X_{t} \in \mathcal{X}$, a context of action
- $\left(Y_{1}(a)\right)_{a \in \mathcal{A}}, \ldots,\left(Y_{t}(a)\right)_{a \in \mathcal{A}}, \ldots$ iid, hidden each $Y_{t}(a)$ the reward (in context X_{t}) of action a, one among $|\mathcal{A}|<\infty$ possible actions
- at every time $t \geq 1, A_{t} \sim g_{t}\left(\cdot \mid X_{t}\right)$, observed, yields the observed reward $Y_{t}=Y_{t}\left(A_{t}\right)$, where
- the law g_{t} is built based on $\left(X_{1}, A_{1}, Y_{1}\right), \ldots,\left(X_{t-1}, A_{t-1}, Y_{t-1}\right)$ and known to us
- $A_{t} \perp Y_{t}(a) \mid X_{t}$ for all $a \in \mathcal{A}$ - "randomization"

Useful for regret control, best arm identification

Context: adaptive experiment

- $X_{1}, \ldots, X_{t}, \ldots$ iid, observed sequentially each $X_{t} \in \mathcal{X}$, a context of action
- $\left(Y_{1}(a)\right)_{a \in \mathcal{A}}, \ldots,\left(Y_{t}(a)\right)_{a \in \mathcal{A}}, \ldots$ iid, hidden each $Y_{t}(a)$ the reward (in context X_{t}) of action a, one among $|\mathcal{A}|<\infty$ possible actions
- at every time $t \geq 1, A_{t} \sim g_{t}\left(\cdot \mid X_{t}\right)$, observed, yields the observed reward $Y_{t}=Y_{t}\left(A_{t}\right)$, where
- the law g_{t} is built based on $\left(X_{1}, A_{1}, Y_{1}\right), \ldots,\left(X_{t-1}, A_{t-1}, Y_{t-1}\right)$ and known to us
- $A_{t} \perp Y_{t}(a) \mid X_{t}$ for all $a \in \mathcal{A}$ - "randomization"

Useful for regret control, best arm identification, policy learning

Context: adaptive experiment

- $X_{1}, \ldots, X_{t}, \ldots$ iid, observed sequentially each $X_{t} \in \mathcal{X}$, a context of action
- $\left(Y_{1}(a)\right)_{a \in \mathcal{A}}, \ldots,\left(Y_{t}(a)\right)_{a \in \mathcal{A}}, \ldots$ iid, hidden each $Y_{t}(a)$ the reward (in context X_{t}) of action a, one among $|\mathcal{A}|<\infty$ possible actions
- at every time $t \geq 1, A_{t} \sim g_{t}\left(\cdot \mid X_{t}\right)$, observed, yields the observed reward $Y_{t}=Y_{t}\left(A_{t}\right)$, where
- the law g_{t} is built based on $\left(X_{1}, A_{1}, Y_{1}\right), \ldots,\left(X_{t-1}, A_{t-1}, Y_{t-1}\right)$ and known to us
- $A_{t} \perp Y_{t}(a) \mid X_{t}$ for all $a \in \mathcal{A}$ - "randomization"

Useful for regret control, best arm identification, policy learning, etc.

Risk minimization for policy learning

Given a class of stochastic policies,

$$
\mathcal{F}=\left\{f: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}_{+}: \sum_{a \in \mathcal{A}} f(a \mid x)=1 \text { for all } x \in \mathcal{X}\right\}
$$

and a risk R identifying a best policy f^{\star},

$$
\begin{aligned}
R(f) & =E\left[\sum_{a \in \mathcal{A}} g^{\star}(a \mid X) \times f(a \mid X) \times(-Y(a))\right], \quad \text { all } f \in \mathcal{F} \\
f^{\star} & \in \underset{f \in \mathcal{F}}{\arg \min } R(f)
\end{aligned}
$$

how to learn f^{\star} ?

- Here, g^{\star} serves as a reference action mechanism
- If $g^{\star}(a \mid x)=|\mathcal{A}|^{-1}$ for all $(a, x) \in \mathcal{A} \times \mathcal{X}$, then $R(f)$ is minus the value of policy f

How to learn f^{\star} ?
Recall that

$$
\begin{aligned}
R(f) & =E\left[\sum_{a \in \mathcal{A}} g^{\star}(a \mid X) \times(-Y(a)) \times f(a \mid X)\right], \quad \text { all } f \in \mathcal{F} \\
f^{\star} & \in \underset{f \in \mathcal{F}}{\arg \min } R(f)
\end{aligned}
$$

Introduce

- the loss function $f \mapsto \ell(f)$ such that $\ell(f)(x, a, y)=-y \times f(a \mid x)$
- the importance-sampling-weighted empirical risk

$$
\widehat{R}_{T}(f)=\frac{1}{T} \sum_{t=1}^{T} \frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right), \quad \text { all } f \in \mathcal{F}
$$

- key-fact: $E\left[\frac{g^{*}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right]=R(f)$ (proof)

Define the estimator

$$
\widehat{f}_{T} \in \underset{f \in \mathcal{F}}{\arg \min } \widehat{R}_{T}(f)
$$

How to study \widehat{f}_{T} ?
We wish to control the excess risk of \widehat{f}_{T},

$$
0 \leq R\left(\widehat{f}_{T}\right)-R\left(f^{\star}\right) \leq ?
$$

Main challenge: controlling the martingale sequence difference

$$
f \mapsto \frac{1}{T} \sum_{t=1}^{T} \frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \xi_{t}(f)
$$

with $\xi_{t}(f) \sigma\left(X_{1}, A_{1}, Y_{1}, \ldots, X_{t-1}, A_{t-1}, Y_{t-1}\right)=\mathcal{S}_{t}$-measurable such that $E\left[\xi_{t}(f) \mid \mathcal{S}_{t}\right]=0$

- Need to introduce a notion of sequential bracketing entropy

Our proof adapts that of van Handel (2011)

- Utmost care in handling the deterministic sequence $\left(\gamma_{t}\right)_{t \geq 1}$ defined such that

$$
\left\|\frac{g^{\star}}{g_{t}}\right\|_{\infty} \leq \gamma_{t}, \quad t \geq 1
$$

Theorem

Suppose that

- $\left|Y_{t}\right| \leq M$ for all $t \geq 1$
- $\ell(\mathcal{F})$ has finite $\|\cdot\|_{\infty^{-}}$and $\|\cdot\|_{2, g^{\star}}$-diameters
- there exists $p>0, p \neq 2$, such that $\log N_{[\cdot]}\left(\varepsilon M, \ell(\mathcal{F}),\|\cdot\|_{2, g^{\star}}\right) \lesssim \varepsilon^{-p}$ for all $\varepsilon>0(A)$

Define

$$
\gamma_{T}^{\operatorname{avg}}=\frac{1}{T} \sum_{t=1}^{T} \gamma_{t}, \quad \gamma_{T}^{\max }=\max _{t \leq T} \gamma_{t}
$$

Then, for all $\delta \in] 0, \frac{1}{2}[$, with probability at least $(1-\delta)$,

$$
0 \leq R\left(\widehat{f}_{T}\right)-R\left(f^{\star}\right) \lesssim M\left\{\left(\frac{\gamma_{T}^{\text {avg }}}{T}\right)^{1 / p} 1\{p>2\}+\sqrt{\frac{\gamma_{T}^{\text {avg }}}{T}} \sqrt{\log \left(\frac{1}{\delta}\right)}+\frac{\gamma_{T}^{\max }}{T} \log \left(\frac{1}{\delta}\right)\right\}
$$

- If $p=2$, same as case $p>2$ with polylog terms
- (A) quantifies the complexity of \mathcal{F}
- $p<2$, Donsker class
- $p>2$, possibly non-Donsker class (bigger than Donsker)

Corollary

In the same context, suppose that $p<2(\ell(\mathcal{F})$ is a Donsker class) and that the adaptive experiment implements an ε-greedy exploration with $\left.\varepsilon=t^{-\beta}, \beta \in\right] 0,1\left[:\right.$ for all $t \geq t_{0}$,

$$
g_{t}(a \mid x) \in\left\{\frac{t^{-\beta}}{|\mathcal{A}|-1}, 1-t^{-\beta}\right\}, \quad \text { all }(a, x) \in \mathcal{A} \times \mathcal{X}
$$

Then

- $\gamma_{T}^{\text {avg }}=O\left(T^{\beta}\right)$ and $\gamma_{T}^{\max }=O\left(T^{\beta}\right)$
- $0 \leq E\left[R\left(\widehat{f}_{T}\right)-R\left(f^{\star}\right)\right]=O\left(T^{-\frac{1}{2}+\frac{\beta}{2}}\right)$

Corollary

In the same context, suppose that $p<2(\ell(\mathcal{F})$ is a Donsker class) and that the adaptive experiment implements an ε-greedy exploration with $\left.\varepsilon=t^{-\beta}, \beta \in\right] 0,1\left[:\right.$ for all $t \geq t_{0}$,

$$
g_{t}(a \mid x) \in\left\{\frac{t^{-\beta}}{|\mathcal{A}|-1}, 1-t^{-\beta}\right\}, \quad \text { all }(a, x) \in \mathcal{A} \times \mathcal{X}
$$

Then

- $\gamma_{T}^{\text {avg }}=O\left(T^{\beta}\right)$ and $\gamma_{T}^{\text {max }}=O\left(T^{\beta}\right)$
- $0 \leq E\left[R\left(\widehat{f}_{T}\right)-R\left(f^{\star}\right)\right]=O\left(T^{-\frac{1}{2}+\frac{\beta}{2}}\right)$
- this matches the lower bound obtained by Zhan et al (2021)

Corollary

In the same context, suppose that $p<2(\ell(\mathcal{F})$ is a Donsker class) and that the adaptive experiment implements an ε-greedy exploration with $\left.\varepsilon=t^{-\beta}, \beta \in\right] 0,1\left[:\right.$ for all $t \geq t_{0}$,

$$
g_{t}(a \mid x) \in\left\{\frac{t^{-\beta}}{|\mathcal{A}|-1}, 1-t^{-\beta}\right\}, \quad \text { all }(a, x) \in \mathcal{A} \times \mathcal{X}
$$

Then

- $\gamma_{T}^{\text {avg }}=O\left(T^{\beta}\right)$ and $\gamma_{T}^{\text {max }}=O\left(T^{\beta}\right)$
- $0 \leq E\left[R\left(\widehat{f}_{T}\right)-R\left(f^{\star}\right)\right]=O\left(T^{-\frac{1}{2}+\frac{\beta}{2}}\right)$
- this matches the lower bound obtained by Zhan et al (2021)
- difficult to compare our upper bound to theirs (they use the "Natarayan dimension" to control the complexity of $\ell(\mathcal{F})$)

Corollary

In the same context, suppose that $p<2(\ell(\mathcal{F})$ is a Donsker class) and that the adaptive experiment implements an ε-greedy exploration with $\left.\varepsilon=t^{-\beta}, \beta \in\right] 0,1\left[:\right.$ for all $t \geq t_{0}$,

$$
g_{t}(a \mid x) \in\left\{\frac{t^{-\beta}}{|\mathcal{A}|-1}, 1-t^{-\beta}\right\}, \quad \text { all }(a, x) \in \mathcal{A} \times \mathcal{X}
$$

Then

- $\gamma_{T}^{\text {avg }}=O\left(T^{\beta}\right)$ and $\gamma_{T}^{\text {max }}=O\left(T^{\beta}\right)$
- $0 \leq E\left[R\left(\widehat{f}_{T}\right)-R\left(f^{\star}\right)\right]=O\left(T^{-\frac{1}{2}+\frac{\beta}{2}}\right)$
- this matches the lower bound obtained by Zhan et al (2021)
- difficult to compare our upper bound to theirs (they use the "Natarayan dimension" to control the complexity of $\ell(\mathcal{F})$)
- but when \mathcal{F} is parametrized by a finite-dimensional parameter set, we close the gap and they do not

Discussion

There is more in our article, Bibaut et al (2021):

- faster rates under a margin condition, assuming \mathcal{F} contains the absolute best policy
- same kind of results in regression and classification settings

And there remains many open questions, for instance:

- how to deal with changing classes $\left(\mathcal{F}_{t}\right)_{t \geq 1}$?
- can using a doubly-robust estimator of $R(f)$ instead of $\widehat{R}_{T}(f)$ yield better finite sample performance?

Discussion

There is more in our article, Bibaut et al (2021):

- faster rates under a margin condition, assuming \mathcal{F} contains the absolute best policy
- same kind of results in regression and classification settings

And there remains many open questions, for instance:

- how to deal with changing classes $\left(\mathcal{F}_{t}\right)_{t \geq 1}$?
- can using a doubly-robust estimator of $R(f)$ instead of $\widehat{R}_{T}(f)$ yield better finite sample performance?

Merci

Short bibliography

- A. Bibaut, N. Kallus, M. Dimakopoulou, A. Chambaz, M. J. van der Laan, Risk minimization from adaptively collected data: guarantees for supervised and policy learning, NeurIPS 2021, 34:19261-19273, 2021
- R. van Handel, On the minimal penalty for markov order estimation, Probability theory and related fields, 150(3-4):709-738, 2011
- R. Zhan, Z. Ren, S. Athey, Z. Zhou, Policy learning with adaptively collected data, arXiv preprint arXiv:2105.02344, 2021

Faster rates

Define

$$
\begin{aligned}
\mu(a, X) & =E(Y(a) \mid X), \quad \text { all } a \in \mathcal{A} \\
\mu^{\star}(X) & =\max _{a \in \mathcal{A}} \mu(a, X)
\end{aligned}
$$

and $a^{\star}(X)$ such that $\mu\left(a^{\star}(X), X\right)=\mu^{\star}(X)$
Suppose that

- $R\left(f^{\star}\right)=-E\left[\mu^{\star}(X)\right]$ (the class \mathcal{F} is well-specified)
- margin assumption: there exists $\nu>0$ such that, for all $s>0$,

$$
P\left(0<\mu^{\star}(X)-\max _{a \neq a^{\star}(X)} \mu(a, X) \leq s\right) \lesssim s^{\nu}
$$

Consider for simplicity the same adaptive experiment as in the corollary, with $t^{-\beta}$-greedy exploration, and the case that p is very small. Then, for all $\delta \in] 0, \frac{1}{2}[$, with probability at least $(1-\delta)$,

$$
0 \leq E\left[R\left(\widehat{f}_{T}\right)-R\left(f^{\star}\right)\right]=O\left(T^{-\left(\frac{1}{2}+\frac{\beta}{2}\right) \times \frac{2+2 \nu}{2+\nu}}\right)
$$

Introduce $L(f)\left(A_{t}, X_{t}\right)=E\left[\ell(f)\left(X_{t}, A_{t}, Y_{t}\right) \mid A_{t}, X_{t}\right]$. It holds that

$$
E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right]
$$

Introduce $L(f)\left(A_{t}, X_{t}\right)=E\left[\ell(f)\left(X_{t}, A_{t}, Y_{t}\right) \mid A_{t}, X_{t}\right]$. It holds that

$$
\begin{aligned}
& E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right] \\
& =E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right]
\end{aligned}
$$

Introduce $L(f)\left(A_{t}, X_{t}\right)=E\left[\ell(f)\left(X_{t}, A_{t}, Y_{t}\right) \mid A_{t}, X_{t}\right]$. It holds that

$$
\begin{aligned}
& E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t}\right) X_{t} t} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right] \\
& =E\left[\frac{g^{*}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =E\left[\left(\sum_{a \in \mathcal{A}} \mathbf{1}\left\{A_{t}=a\right\}\right) \times \frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right]
\end{aligned}
$$

Introduce $L(f)\left(A_{t}, X_{t}\right)=E\left[\ell(f)\left(X_{t}, A_{t}, Y_{t}\right) \mid A_{t}, X_{t}\right]$. It holds that

$$
\begin{aligned}
& E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right] \\
& =E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =E\left[\left(\sum_{a \in \mathcal{A}} 1\left\{A_{t}=a\right\}\right) \times \frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[1\left\{A_{t}=a\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right]
\end{aligned}
$$

Introduce $L(f)\left(A_{t}, X_{t}\right)=E\left[\ell(f)\left(X_{t}, A_{t}, Y_{t}\right) \mid A_{t}, X_{t}\right]$. It holds that

$$
\begin{aligned}
& E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right] \\
& =E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =E\left[\left(\sum_{a \in \mathcal{A}} \mathbf{1}\left\{A_{t}=a\right\}\right) \times \frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[1\left\{A_{t}=a\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[P\left\{A_{t}=a \mid X_{t}\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right]
\end{aligned}
$$

Introduce $L(f)\left(A_{t}, X_{t}\right)=E\left[\ell(f)\left(X_{t}, A_{t}, Y_{t}\right) \mid A_{t}, X_{t}\right]$. It holds that

$$
\begin{aligned}
& E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right] \\
& =E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =E\left[\left(\sum_{a \in \mathcal{A}} 1\left\{A_{t}=a\right\}\right) \times \frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[\mathbf{1}\left\{A_{t}=a\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[P\left\{A_{t}=a \mid X_{t}\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[g_{t}\left(a \mid X_{t}\right) \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right]
\end{aligned}
$$

Introduce $L(f)\left(A_{t}, X_{t}\right)=E\left[\ell(f)\left(X_{t}, A_{t}, Y_{t}\right) \mid A_{t}, X_{t}\right]$. It holds that

$$
\begin{aligned}
& E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right] \\
& =E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =E\left[\left(\sum_{a \in \mathcal{A}} \mathbf{1}\left\{A_{t}=a\right\}\right) \times \frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[\mathbf{1}\left\{A_{t}=a\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[P\left\{A_{t}=a \mid X_{t}\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[g_{t}\left(a \mid X_{t}\right) \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =E\left[\sum_{a \in \mathcal{A}} g^{\star}\left(A_{t} \mid X_{t}\right) \times L(f)\left(X_{t}, A_{t}\right)\right]
\end{aligned}
$$

Introduce $L(f)\left(A_{t}, X_{t}\right)=E\left[\ell(f)\left(X_{t}, A_{t}, Y_{t}\right) \mid A_{t}, X_{t}\right]$. It holds that

$$
\begin{aligned}
& E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right] \\
& =E\left[\frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =E\left[\left(\sum_{a \in \mathcal{A}} 1\left\{A_{t}=a\right\}\right) \times \frac{g^{\star}\left(A_{t} \mid X_{t}\right)}{g_{t}\left(A_{t} \mid X_{t}\right)} \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[\mathbf{1}\left\{A_{t}=a\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[P\left\{A_{t}=a \mid X_{t}\right\} \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =\sum_{a \in \mathcal{A}} E\left[g_{t}\left(a \mid X_{t}\right) \times \frac{g^{\star}\left(a \mid X_{t}\right)}{g_{t}\left(a \mid X_{t}\right)} \times L(f)\left(X_{t}, a\right)\right] \\
& =E\left[\sum_{a \in \mathcal{A}} g^{\star}\left(A_{t} \mid X_{t}\right) \times L(f)\left(X_{t}, A_{t}\right)\right] \\
& =E\left[\sum_{a \in \mathcal{A}} g^{\star}\left(A_{t} \mid X_{t}\right) \times \ell(f)\left(X_{t}, A_{t}, Y_{t}\right)\right]=R(f)
\end{aligned}
$$

