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Context: adaptive experiment

X1, . . . ,Xt , . . . iid, observed sequentially

each Xt ∈ X , a context of action

(Y1(a))a∈A, . . . , (Yt(a))a∈A, . . . iid,hidden

each Yt(a) the reward (in context Xt) of action a, one among |A| <∞ possible actions

at every time t ≥ 1, At ∼ gt(·|Xt), observed,

yields the observed reward Yt = Yt(At), where

I the law gt is built based on (X1,A1,Y1), . . . , (Xt−1,At−1,Yt−1) and known to us

I At ⊥ Yt(a)|Xt for all a ∈ A – “randomization”

Useful for regret control, best arm identification, policy learning, etc.
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Risk minimization for policy learning

Given a class of stochastic policies,

F =

{
f : X ×A → R+ :

∑
a∈A

f (a|x) = 1 for all x ∈ X

}

and a risk R identifying a best policy f ?,

R(f ) = E

[∑
a∈A

g?(a|X )× f (a|X )× (−Y (a))

]
, all f ∈ F

f ? ∈ arg min
f∈F

R(f )

how to learn f ??

Here, g? serves as a reference action mechanism

If g?(a|x) = |A|−1 for all (a, x) ∈ A× X , then R(f ) is minus the value of policy f



How to learn f ??

Recall that

R(f ) = E

[∑
a∈A

g?(a|X )× (−Y (a))× f (a|X )

]
, all f ∈ F

f ? ∈ arg min
f∈F

R(f )

Introduce

the loss function f 7→ `(f ) such that `(f )(x , a, y) = −y × f (a|x)

the importance-sampling-weighted empirical risk

R̂T (f ) =
1

T

T∑
t=1

g?(At |Xt)

gt(At |Xt)
× `(f )(Xt ,At ,Yt), all f ∈ F

I key-fact: E
[
g?(At |Xt )
gt (At |Xt )

× `(f )(Xt ,At ,Yt)
]

= R(f ) (proof)

Define the estimator

f̂T ∈ arg min
f∈F

R̂T (f )



How to study f̂T ?

We wish to control the excess risk of f̂T ,

0 ≤ R(f̂T )− R(f ?) ≤ ?

Main challenge: controlling the martingale sequence difference

f 7→ 1

T

T∑
t=1

g?(At |Xt)

gt(At |Xt)
ξt(f )

with ξt(f ) σ(X1,A1,Y1, . . . ,Xt−1,At−1,Yt−1) = St-measurable such that E [ξt(f )|St ] = 0

Need to introduce a notion of sequential bracketing entropy

Our proof adapts that of van Handel (2011)

Utmost care in handling the deterministic sequence (γt)t≥1 defined such that∥∥∥∥g?gt
∥∥∥∥
∞
≤ γt , t ≥ 1



Theorem

Suppose that

I |Yt | ≤ M for all t ≥ 1

I `(F) has finite ‖ · ‖∞- and ‖ · ‖2,g? -diameters

I there exists p > 0, p 6= 2, such that log N[·](εM, `(F), ‖ · ‖2,g? ) . ε−p for all ε > 0 (A)

Define

γavg
T =

1

T

T∑
t=1

γt , γmax
T = max

t≤T
γt

Then, for all δ ∈]0, 1
2
[, with probability at least (1− δ),

0 ≤ R(f̂T )− R(f ?) . M

{(
γavg
T

T

)1/p

1{p > 2}+

√
γavg
T

T

√
log

(
1

δ

)
+
γmax
T

T
log

(
1

δ

)}

If p = 2, same as case p > 2 with polylog terms

(A) quantifies the complexity of F
I p < 2, Donsker class

I p > 2, possibly non-Donsker class (bigger than Donsker)



Corollary

In the same context, suppose that p < 2 (`(F) is a Donsker class) and that the adaptive

experiment implements an ε-greedy exploration with ε = t−β , β ∈]0, 1[: for all t ≥ t0,

gt(a|x) ∈
{

t−β

|A| − 1
, 1− t−β

}
, all (a, x) ∈ A× X

Then

γavg
T = O(Tβ) and γmax

T = O(Tβ)

0 ≤ E
[
R(f̂T )− R(f ?)

]
= O

(
T−

1
2

+
β
2

)
I this matches the lower bound obtained by Zhan et al (2021)

I difficult to compare our upper bound to theirs (they use the “Natarayan dimension” to

control the complexity of `(F))

I but when F is parametrized by a finite-dimensional parameter set, we close the gap and

they do not
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Discussion

There is more in our article, Bibaut et al (2021):

faster rates under a margin condition, assuming F contains the absolute best policy

same kind of results in regression and classification settings

And there remains many open questions, for instance:

how to deal with changing classes (Ft)t≥1?

can using a doubly-robust estimator of R(f ) instead of R̂T (f ) yield better finite sample

performance?

Merci
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Faster rates

Define

µ(a,X ) = E(Y (a)|X ), all a ∈ A

µ?(X ) = max
a∈A

µ(a,X )

and a?(X ) such that µ(a?(X ),X ) = µ?(X )

Suppose that

I R(f ?) = −E [µ?(X )] (the class F is well-specified)

I margin assumption: there exists ν > 0 such that, for all s > 0,

P

(
0 < µ?(X )− max

a 6=a?(X )
µ(a,X ) ≤ s

)
. sν

Consider for simplicity the same adaptive experiment as in the corollary, with t−β-greedy

exploration, and the case that p is very small. Then, for all δ ∈]0, 1
2
[, with probability at

least (1− δ),

0 ≤ E
[
R(f̂T )− R(f ?)

]
= O

(
T
−
(

1
2

+
β
2

)
× 2+2ν

2+ν

)
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]
=
∑
a∈A

E
[
gt(a|Xt)× g?(a|Xt )

gt (a|Xt )
× L(f )(Xt , a)

]
= E

[∑
a∈A

g?(At |Xt)× L(f )(Xt ,At)

]

= E

[∑
a∈A

g?(At |Xt)× `(f )(Xt ,At ,Yt)

]
= R(f ).

back


