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Risk minimization for policy learning

Given a class of stochastic policies,

f—{f:XxA—HIh:Zf(ax)_lforallxeX}

acA
and a risk R identifying a best policy f*,
R(f)=E [Z g (alX) x f(a|X) x (—Y(a))] , allfeF
ac A

f* € argmin R(f)
fer

how to learn f*?
o Here, g* serves as a reference action mechanism

o If g*(alx) = |A|™* for all (a,x) € A x X, then R(f) is minus the value of policy f



How to learn f*7?

Recall that
D> g (alX) x (-Y(a) x f(alX)|, allfeF
acA
f* € argmin R(f)
fer
Introduce

@ the loss function f +— £(f) such that ¢(f)(x,a,y) = —y X f(a|x)

@ the importance-sampling-weighted empirical risk

g (Al Xe)
Rr(f) = ngtMXt X U(F) (X, Ar, Ye), allfeF

> key-fact: E[ ) xé(f)(Xt,At,Yt)] = R(f) (proof)

Define the estimator

?T € arg min ﬁr(f)
fer



How to study i?T?

We wish to control the excess risk of ?T
0< R(fr)— R(f*) <7

Main challenge: controlling the martingale sequence difference
2y LG e
— gt(Ae] Xt)

with &(f) o(X1, A1, Y1,..., Xe—1, At—1, Yi—1) = St-measurable such that E[£:(f)|S:] =0

@ Need to introduce a notion of sequential bracketing entropy

Our proof adapts that of van Handel (2011)

@ Utmost care in handling the deterministic sequence (:):>1 defined such that

IS
8t

<y, t=>1




Theorem

Suppose that

> Yy < Mforallt>1

» ((F) has finite || - ||co- and || - ||2,g*-diameters

> there exists p > 0, p # 2, such that log Nj(eM, £(F), [ - [|2,4+) S e7P for all € > 0 (A)

Define
T

avg

1 x
7T —72% VT = maxye

t=1

Then, for all § €]0, 5[, with probability at least (1 — 6),

avg\ 1/p avg max
_ . [y | /1
0 < R(fr) — R(f )SJM{(W;_) 1{p>2}+ 'y% log (S) —I—W;_ log

o If p =2, same as case p > 2 with polylog terms
e (A) quantifies the complexity of F

> p < 2, Donsker class
» p > 2, possibly non-Donsker class (bigger than Donsker)

(

0

)}



Corollary
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Corollary

In the same context, suppose that p < 2 (¢(F) is a Donsker class) and that the adaptive

experiment implements an e-greedy exploration with e = t=#, 3 €]0,1[: for all t > to,

B
t
ax)ed——— 1t} all(a,x)eAXX
slab) e { g1t (@)
Then
° 77% = O(T") and 77 = O(T")
~ 1.8

e 0<E [R(fr) — R(f*)] =0 (T*2+2)

» this matches the lower bound obtained by Zhan et al (2021)

» difficult to compare our upper bound to theirs (they use the “Natarayan dimension” to

control the complexity of £(F))

» but when F is parametrized by a finite-dimensional parameter set, we close the gap and

they do not



Discussion

There is more in our article, Bibaut et al (2021):

o faster rates under a margin condition, assuming F contains the absolute best policy
@ same kind of results in regression and classification settings

And there remains many open questions, for instance:

@ how to deal with changing classes (F;)i>17

o can using a doubly-robust estimator of R(f) instead of Ry (f) yield better finite sample

performance?
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Faster rates
Define
w(a, X) = E(Y(a)|X), allac A
' (X) = maxp(a, X)
and a*(X) such that p(a*(X), X) = pu*(X)
Suppose that

> R(f*) = —E[pn*(X)] (the class F is well-specified)

P> margin assumption: there exists v > 0 such that, for all s > 0,
P(0< u*(X)— X)<s)<s”
( w*(X) a#rgg&)u(a ),S) <s
Consider for simplicity the same adaptive experiment as in the corollary, with t~?-greedy
exploration, and the case that p is very small. Then, for all § €]0, %[ with probability at
least (1 — ¢),

0<E [R(?r) - R(f*)] -0 <7—<§+§)x2212,,”>
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E [gjg:;";;; X 0(F)(Xe, Ae, Yt)]
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- [(Zl{At_a}> ;3;";? L(F) (X, Ar)

acA
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gt(alXt)

o8
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acA

E |:].{At — a} % gg:((:\‘))((:)) % L(f)(Xt, a):|

>
acA
Z [P{At = 3|Xt} X ggr(:\‘))((:) X L( )(Xha):|
ac A
>
A
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acA

[I{At = a} x £609 1 (£)(X, a)]

[x(alX:) x £ 5 < L(F)(X., )]
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2E
€A
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€A
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Introduce L(f)(As, Xt) = E[€(F)(Xe, Ae, Ye)|Ae, Xe]. It holds that

E [if((iﬂ')’é‘)’ % 0(F)(Xe, Ar, vt)]

* (Ae| Xe
= E[£G5 x L(A(x, A))]

= [ Zl{At—a}> X o 1 (F)(Xe, Ar)

acA

[I{Af = a} x R < LA(X, a)]

ge(alXt)

[P{At = alX} x EEX) oy (f )(Xt,a)]

[se(aix) x 5 1) 0% )]

(Ae| Xe) x L(F)(Xe, Ar)

- (AdlXe) x L(F)(Xe, A, Vo) | = R(f).

=
=
o
d
d

2
2




