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The four phases of clinical trials

source: MD Anderson Cancer Center

This talk: phase I, phase I/II
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A stochastic model for dose-finding

Early stage trials are often about finding the right dose (or
combination of doses) of a given treatment.

Dose 1 Dose 2 · · · Dose K

toxicity probability p1 p2 · · · pK
efficacy probability eff1 eff2 · · · effK

After selecting a dose Dt ∈ {1, . . . ,K} (“arm”) for patient t,

observe whether un-desired side effects occur: Xt ∼ B(pDt )

P(Xt = 1|Dt = d) = pd P(Xt = 0|Dt = d) = 1− pd

observe whether the treatment is efficient: Yt ∼ B(effDt )
(in phase I/II designs)

Question: what is a good arm?
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A non-standard bandit problem

Maximum Tolerated Dose (MTD)

Given a specified threshold θ, the MTD is the dose whose
probability of toxicity is closest to θ:

k? = arg min
k∈[K ]

|θ − pk |

Two possible goals with this alternative notion of optimal arm :

identify the MTD as quickly as possible
(' best arm identification )

treat as many patients as possible with the MTD
(' regret minimization )

Ideally both, but they are known to be conflicting objectives.
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Outline

1 Solving (unstructured) MTD identification

2 Exploiting monotonicity assumptions

3 Beyond MTD identification



5/20

Outline

1 Solving (unstructured) MTD identification

2 Exploiting monotonicity assumptions

3 Beyond MTD identification



6/20

Sequential Halving for MTD Identification

Input: total number of patients T (fixed-budget)
number of doses K

Initialization: S0 = {1, . . . ,K};
For r = 0 to dlog2(K )e − 1, do

sample each arm i ∈ Sr for tr =
⌊

T
|Sr |dlog2(K)e

⌋
times;

let p̂ri be the empirical toxicity of dose i ;

let Sr+1 be the set of d|Sr |/2e arms with smallest d̂ r
i := |θ− p̂ri |

Return k̂T the unique arm in Sdlog2(K)e

Upper bound on the error probability [Aziz et al., 2021]

P
(
k̂T 6= k∗

)
≤ 9 log2 K · exp

(
− T

8H(p) log2 K

)
,

where H(p) :=
∑K

k=1
1

∆2
k

with ∆k = |θ − pk | − |θ − pk? |.
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Limitations

the error bound is only meaningful for large values of T

uniform sampling in early phases may be unethical
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Thompson Sampling for MTD Allocation

p = (p1, . . . , pK ) ∈ [0, 1]K : vector of toxicity probabilities

Π(0): prior distribution on p
Π(t): posterior distribution after observing (D1,X1, . . . ,Dt ,Xt)

Thompson Sampling

Sample (p̃1(t), . . . , p̃k(t)) ∼ Π(t) and allocate dose

Dt+1 = arg min
k∈[K ]

|p̃k(t)− θ|

1st view: play the optimal arm (= MTD) in a model sampled
from the posterior distribution

2nd view: a randomized design in which the probability to
select dose k is the posterior probability that k is the MTD
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Independent Thompson Sampling

A simple, product prior

Π0 =
⊗K

i=1 π
0
k , where π0

k = U([0, 1])

Πt =
⊗K

i=1 π
t
k , where

πtk = Beta
(
Sk(t) + 1,Nk(t)− Sk(t) + 1

)
Nk(t): number of times dose k was given up to time t

Sk(t): number of times dose k was found toxic up to time t

Independent Thompson Sampling

∀k ∈ [K ], p̃k(t) ∼ πtk
Dt+1 = arg min

k∈[K ]
|θ − p̃k(t)|
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An asymptotically optimal algorithm

Upper bound on the number of allocations [Aziz et al., 2021]

For all ε > 0, there exists a constant Cε,θ,p s.t., for all k /∈ MTD

E[Nk(T )] ≤ 1 + ε

kl(pk , d
∗
k )

log(T ) + Cε,θ,p,

where kl(x , y) is the binary Kullback-Leibler divergence.
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logarithmic number of allocations to sub-optimal doses

lower bound proving its optimality... in an asymptotic regime
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A structured bandit problem

For clinical trials involving a single agent, the toxicity is increasing
with the dose :

How to incorporate this information in algorithms?

[Garivier et al., 2019] : an identification algorithm

this work: Thompson Sampling
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A Bayesian model for increasing toxicities

Parametric assumption: given two parameters β0, β1 ∈ R,

pk(β0, β1) =
1

1 + e−β0−β1uk

uk : effective dose (some carefully chosen parameter)

Bayesian model: (β0, β1) ∼ π, e.g.

β0 ∼ N (0, 100) and β1 ∼ Exp(1).

Ü the posterior distribution πt on (β0, β1) can be sampled from
(e.g. using Hamiltonian Monte-Carlo methods)
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Illustration of the posterior update

source: Marie-Karelle Riviere (PhD thesis)
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Thompson Sampling versus the CRM

Thompson Sampling

(
β̃0(t), β̃1(t)

)
∼ πt ,

DTS
t+1 ∈ arg min

k∈[K ]

∣∣∣θ − pk

(
β̃0(t), β̃1(t)

)∣∣∣
Continual Reassesment Method (CRM) [O’Quingley et al., 1990]

β̂i (t) =

∫
R
βidπt(β0, β1) (posterior mean)

DCRM
t+1 ∈ arg min

k∈[K ]

∣∣∣θ − pk

(
β̂0(t), β̂1(t)

)∣∣∣
Ü compared to the existing CRM, TS is adding exploration
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Empirical performance

Too much exploration may be un-ethical Ü two variants of TS
restricting the set of doses that can be chosen

T = 36 patients , K = 6 doses , θ = 0.3

% of recommendation (left) and allocation (right)
(average over 2000 repetitions)
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A two-dimensional structured bandit

For certain agents, a plateau of efficacy is observed, which
motivates the search of the Minimal Effective Dose (MED)

k? = min

{
k ∈ [K ] : effk = max

`:p`≤θ
eff`

}
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A Bayesian model

Toxicity: pk(β0, β1) = 1

1+e−[β0+β1uk ]

β0 ∼ N (0, 100), β1 ∼ Exp(1)

Efficacy: τ indicates the beginning of the plateau

effk(γ0, γ1, τ) =
1

1 + e−[γ0+γ1(vk1(k<τ)+vτ1(k≥τ))]

γ0 ∼ N (0, 100), γ1 ∼ Exp(1), τ ∼ (1/K , . . . , 1/K ).

Thompson Sampling(
β̃0(t), β̃1(t), γ̃0(t), γ̃1(t), τ̃(t)

)
∼ πt ,

DTS
t+1 ∈ MED

(
β̃0(t), γ̃0(t), β̃1(t), γ̃1(t), τ̃(t)

)
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Results

Competitive results wrt. the state-of the art MTA-RA algorithm
[Riviere et al., 2017]

T = 60 patients, K = 6 doses, θ = 0.35

% of recommendation (left) and allocation (right)
(average over 2000 repetitions)
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Conclusion

Thompson Sampling is a flexible algorithm for which we gave
examples of applications in

phase I trials (one critrion: toxicity)

phase I/II trials (two criteria: toxicity and efficacy)

Ü what if there are more than two criteria?
(e.g. multiple indicators of efficacy)

A big gap between theory and practice:

theoretical guarantees for an independent prior

prior distributions leveraging extra information used in
practice (with only some consistency guarantees for the CRM)

Some open questions:

Do we need exploration?

How to appropriately balance allocation (=treatment) and
recommendation (=identification)?
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Details on the variants of Thompson Sampling

TS(ε) outputs a dose that belongs to the set{
k ∈ [K ] :

∣∣∣pk(β̂0(t), β̂1(t))− pMTD(β̂0(t),β̂1(t))(β̂0(t), ˆβ1(t))
∣∣∣ ≤ ε}

(ε = 0.05)

TS A outputs a dose that belongs to the set{
k ∈ [K ] : P(β0,β1)∼πt

(
pk(β0, β1) > pMTD(β0,β1)(β0, β1)

)
≤ c1

}
(c1 = 0.8)
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