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The four phases of clinical trials

Phase | Phase IV

Focus on safety Focus on Compares the Treatment is approved
and the proper effectiveness new tr t to and available. Long-term

dose. and side effects. existing treatment. effects are observed.
15 to 50 patients Less than 100 patients Hundreds of people Thousands of people

source: MD Anderson Cancer Center

This talk: phase |, phase I/l
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A stochastic model for dose-finding

Early stage trials are often about finding the right dose (or
combination of doses) of a given treatment.

Dose1 | Dose 2 | --- | Dose K
toxicity probability p1 P2 e PK
efficacy probability | eff; effs eff

After selecting a dose D; « {1,... K} (“arm") for patient t,

@ observe whether un-desired side effects occur: X; ~ B(pp,)
P(X;=1D; =d)=pg P(X;=0|D;=d)=1-py

@ observe whether the treatment is efficient: Y; ~ B(effp,)
(in phase I/II designs)

Question: what is a good arm? )
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A non-standard bandit problem

Maximum Tolerated Dose (MTD)

Given a specified threshold 8, the MTD is the dose whose
probability of toxicity is closest to 6:

k* = arg min |0 — py|
ke[K]

Two possible goals with this alternative notion of optimal arm :

@ identify the MTD as quickly as possible
(~ best arm identification )

@ treat as many patients as possible with the MTD
(=~ regret minimization )

Ideally both, but they are known to be conflicting objectives.



© Solving (unstructured) MTD identification
© Exploiting monotonicity assumptions

© Beyond MTD identification



© Solving (unstructured) MTD identification



Sequential Halving for MTD lIdentification

Input: total number of patients T (fixed-budget)
number of doses K
Initialization: Sp = {1,..., K};
For r =0 to [log,(K)] — 1, do
sample each arm i/ € S, for & = Lmj times;
let p7 be the empirical toxicity of dose i; X
let S,+1 be the set of [|S,|/2] arms with smallest d/ := |0 — p!]|

Return IQT the unique arm in S|'Iog2(K)]

Upper bound on the error probability

. T
P (kr# k*) <9logy K - exp | — o
(br # i) < 9tee; eXp( 8H(p)logzK)’

where H(p) == 31, Ali with Ay = |0 — pi| — |6 — pr+|.




Sequential Halving for MTD lIdentification

Input: total number of patients T (fixed-budget)
number of doses K
Initialization: Sp = {1,..., K};
For r =0 to [log,(K)] — 1, do
sample each arm j € S, for & = Lmj times;
let p7 be the empirical toxicity of dose i; X
let S,+1 be the set of [|S,|/2] arms with smallest d/ := |0 — p!|

Return IQT the unique arm in 5[Iog2(K)]

@ the error bound is only meaningful for large values of T

@ uniform sampling in early phases may be unethical




Thompson Sampling for MTD Allocation

p=(p1,...,pk) €[0,1]X : vector of toxicity probabilities

N©): prior distribution on p
M) posterior distribution after observing (D1, X1,..., D, X¢)

Thompson Sampling

Sample (B1(t),. .., pi(t)) ~ N and allocate dose

D1 = argmin |pe(t) — 0]
ke[K]

e 1st view: play the optimal arm (= MTD) in a model sampled
from the posterior distribution

@ 2nd view: a randomized design in which the probability to
select dose k is the posterior probability that k is the MTD
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Independent Thompson Sampling

A simple, product prior

Mo = @K, 7¥, where 7 = 1([0,1])

Nt = @K, «t, where

7T£ = Beta(Sk(t) + 1, Nk(t) — Sk(t) + 1)
@ Ni(t): number of times dose k was given up to time t

@ Si(t): number of times dose k was found toxic up to time t

Independent Thompson Sampling

vk € [K], Bu(t) ~ 7t

D1 = argmin |0 — py(t)]
ke[K]
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An asymptotically optimal algorithm

Upper bound on the number of allocations

For all € > 0, there exists a constant C. g p s.t., for all k ¢ MTD

1+¢
kl(pkad[):)

where kl(x, y) is the binary Kullback-Leibler divergence.

E[N (T)] < log(T) + Ce,p;

toxicity probability
X
=2
ty probability
X
k]
i

@ logarithmic number of allocations to sub-optimal doses

@ lower bound proving its optimality... in an asymptotic regime



© Exploiting monotonicity assumptions



A structured bandit problem

For clinical trials involving a single agent, the toxicity is increasing
with the dose :

Toxicity

10
)

0.8
L

Toxicity probability

Maximum acceptable
targeted toxicity

How to incorporate this information in algorithms?
o [Garivier et al., 2019] : an identification algorithm
@ this work: Thompson Sampling



A Bayesian model for increasing toxicities

Parametric assumption: given two parameters g, 81 € R,

1

PelBo, B1) = T

uy: effective dose (some carefully chosen parameter)

Bayesian model: (3, 31) ~ 7, e.g.
Bo ~ N(0,100) and (7 ~ Exp(1).

=» the posterior distribution 7 on (3o, 1) can be sampled from
(e.g. using Hamiltonian Monte-Carlo methods)



lllustration of the posterior update
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source: Marie-Karelle Riviere (PhD thesis)



Thompson Sampling versus the CRM

Thompson Sampling

(50(1”)751@)) ~ T,
D[P e argmln ‘9 Pk (/30(1“) Bu(t )>‘

Continual Reassesment Method (CRM)

3,-(1.‘) = / Bidme(Bo, B1)  (posterior mean)
DC € argmin ‘9 — Pk <3o(t),31(t)>‘

ke[K]

=» compared to the existing CRM, TS is adding exploration

14/20



Empirical performance

Too much exploration may be un-ethical =¥ two variants of TS
restricting the set of doses that can be chosen

T = 36 patients , K = 6 doses , # = 0.3

Sc. 5: Tox prob  0.10 0.25 0.40 0.50 0.65 0.75|0.10 0.25 0.40 0.50 0.65 0.75
343 B0 206308242 15351 08 | - - - - -
oM 48 4979065 01 00 |15 07 3) 4 55 @0
ro 43 8079454 01 01|56 475 (160 aLe 64 0
soo 48 $22365 62 02 00 |10 511y 4y 159 4 69
A 20 50836470 1611|500, (g5 (189 ai0) 62 (00

Independent TS 24.3 32.6 214 14.6 54 1.6 (13:‘5‘) (%g) (13:(1)) (196_'1(; (172.65) (150_'5‘;

% of recommendation (left) and allocation (right)
(average over 2000 repetitions)



© Beyond MTD identification



A two-dimensional structured bandit

For certain agents, a plateau of efficacy is observed, which
motivates the search of the Minimal Effective Dose (MED)
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A Bayesian model

Toxicity: px(Bo, 1) = mTlowluk]

/80 ~ N(O? 100)? /81 ~ Exp(l)

Efficacy: 7 indicates the beginning of the plateau

1
T 1+ e Dot n(ud(k<r)tvrL(k=7))]

eﬁk(707 1, T)

’VONN(Oa 100)7 " NEXP(]')’ TN(]'/K771/K)

Thompson Sampling

(Bo®): Ba(8), Fo(t) 51(8), 7()) ~ s,

D?; € MED (Bo(t)a’70(”781(1')7:/1“)771(1'))




Competitive results wrt. the state-of the art MTA-RA algorithm
[Riviere et al., 2017]

T = 60 patients, K = 6 doses, # = 0.35

Table 4: Results for MED identification (part 1/3).
Algorithm E-Stop Recommended Allocated
1 2 3 4 5 6 1 2 3 4 5 6
Sc. 1: Tox prob 0.01 0.05 0.15 02 045 06| 001 005 0.5 02 045 06

Sc. 1: Eff prob 01 035 06 06 06 06| 01 035 06 06 06 06

71 142 319 249 129 25
MTA-RA 04 04 70 549 291 74 08| o (oo O o G436 @)

107 7207 "357 239 73 09
TSA 0903 96 594261 35 02154 (150) (149 (41 BI) @7)

% of recommendation (left) and allocation (right)
(average over 2000 repetitions)




Conclusion

Thompson Sampling is a flexible algorithm for which we gave
examples of applications in

@ phase | trials (one critrion: toxicity)
@ phase I/l trials (two criteria: toxicity and efficacy)

=» what if there are more than two criteria?
(e.g. multiple indicators of efficacy)

A big gap between theory and practice:
@ theoretical guarantees for an independent prior

@ prior distributions leveraging extra information used in
practice (with only some consistency guarantees for the CRM)

Some open questions:
@ Do we need exploration?

@ How to appropriately balance allocation (=treatment) and
recommendation (=identification)?
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Details on the variants of Thompson Sampling

TS(e) outputs a dose that belongs to the set

{k € [K]: ’Pk Bo(1): B1(1)) = Parrnia(e) fa(ey (Po(D); Bl(t))‘ }

(e =0.05)

TS_A outputs a dose that belongs to the set

{k € [K] : Py g1 )ome (Pk(Bos B1) > Prrpi(so,61) (B0, B1)) < Cl}

(Cl = 08)
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