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Classical “Historical” Examples of Bandits Problems

– Size of data: n patients with some proba of getting cured
– Choose one of two treatments to prescribe

or
– Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patientsvas possible
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Classical “Historical” Examples of Bandits Problems

– Size of data: n banners with some proba of click
– Choose one of two ads to display

or
– Banner clicked or ignored

1) Inference: Find the best ad between the red and blue
2) Cumul: Get as many clicksvas possible
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Classical “Historical” Examples of Bandits Problems

– Size of data: n patients with some proba of getting cured
– Choose one of two treatments to prescribe

or
– Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patientsvas possible
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Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.
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Two-Armed Bandit

– Patients arrive and are treated sequentially.
– Save as many as possible.
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Outline

1. Bayesian environment

2. Non-Bayesian, yet stochastic environment

3. Some extensions & alternative models
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Bayesian Environment



K-Armed Stochastic Bandit Problems

– K arms i ∈ {1, . . . , K}, reward Xit ∈ R Gaussian/Bernoulli/...

Xi1, Xi2, . . . ,∼ N
(
µi, 1

)
i.i.d.

– Prior ρi ∈ P(R) (independent between arm)
– Discount γ ∈ [0, 1] (termination proba.)

– Non-Anticipative Policy: πt
(
Xπ0
0 , Xπ1

1 , . . . , Xπt−1
t−1

)
∈ {1, . . . , K}

– Goal: Maximize expected reward E
∑∞

t=0 γ
tXπt

t = E
∑∞

t=0 γ
tµπt
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Optimal Solution - Gittins Index

• Fully specified Bayesian pb. Optimal (non-tractable) strategies
• Simpler formulation (Gittins Index).
Strategy optimal if it selects arm with the highest Gittins index

• Gittins Index ??
• 2 arms. X1t ∈ [0, 1] iid, EX1T = µ and X2t = ν (µ unknown, ν known)
• Optimal policy: selects 1 until τ then selects 2.
• Gittins index (at t) = sup

{
ν | optimal policy selects 1 at time t

}
ν1
t = sup

{
E
∑τ

t=0 γtX1t
E
∑τ

t=0 γt

∣∣∣τ is a stopping time
}
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Simple example of computations

• Prior on Arm 1: type G with proba. p and B with proba. 1− p
• Type G, reward M a.s. ; type B, reward 0 a.s.
• Gittins index at 0 =

E
∑τ

t=0 γ
tX1t

E
∑τ

t=0 γ
t =

p M
1−γ

p
1−γ + (1− p)

=
pM

1− (1− p)γ

• Gittens ind. strictly larger than expected reward (“exploration”)
• Pros

• Reduction from one K-arms problem to K one-arm problem.
• Simple decision policy (select highest index)

• Cons
• Very fragile. All assumptions are necessary
• Computational burden of indices.
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Simpler Bayesian Algorithm. Thompson Sampling

• Prior ρi over the parametric family of distributions Θi

• Repeat at each iteration
• Update the prior w.r.t. the observation (Bayesian update)
• Pick a parameter θi (for each arm) accordingly to the posterior
• Select arm with the highest expectation given picked parameters

• Pros
• Simple computations (Bayesian updates)

Ex. Bernoulli + Beta prior: counting of success/failure
• Cons

• Sub-optimal for the Bayesian pb
• Pros again

• “almost” optimal, and Optimal for the non-Bayesian pb.
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Non-Bayesian Environment



K-Armed Stochastic Bandit Problems

– K actions i ∈ {1, . . . , K}, outcome Xit ∈ R Gaussian/Bernoulli

Xi1, Xi2, . . . ,∼ N
(
µi, 1

)
i.i.d.

– Non-Anticipative Policy: πt
(
Xπ1
1 , Xπ2

2 , . . . , Xπt−1
t−1

)
∈ {1, . . . , K}

– Goal: Maximize expected reward
∑T

t=1 EX
πt
t =

∑T
t=1 µ

πt

– Performance: Cumulative Regret

RT = max
i∈{1,...,K}

T∑
t=1

µi −
T∑
t=1

µπt =
∑
i

∆i

T∑
t=1

1
{
πt = i

}

with ∆i = µ⋆ − µi, the “gap” or cost of error i.
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The pitfall of Reinforcement Learning : negative bias

– X(k)n = 1
n
∑n

m=1 X
(k)
m not available, only X̂(k)n =

∑
m:km=k X

(k)
m

♯{m : km = k}

– with kn = argmax X̂(k)n , ERn = Θ(n).

because E[X̂(k)n ] ≤ µ(k) negatively biased
– Positive (vanishing) bias ? Tradeoff Exploitation/Exploration

Hoeffding inequality: exponential decay∣∣∣X(k)n − µk
∣∣∣ > ε with proba at most 2 exp

(
− 2nε2

)
.

Implies Finite number of ε-mistakes:

E
∑
n∈N

1
{∣∣X(k)n − µk

∣∣ > ε
}

≤ 1
ε2
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Most Famous algorithm [Auer, Cesa-Bianchi, Fisher, ’02]

• UCB - “Upper Confidence Bound”

πt+1 = argmax
i

{
Xit +

√
2 log(t)
Ti(t)

}
,

where Ti(t) =
∑t

t=1 1{πt = i} and Xit = 1
Tit

∑
s:πs=i Xis.

Regret:

ERT ≲
∑

k
log(T)
∆k

Worst-Case:

ERT ≲ sup
∆

K log(T)
∆

∧ T∆

≂
√
KT log(T)
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Ideas of proof πt+1 = argmaxi

{
Xit +

√
2 log(t)
Ti(t)

}
• 2-lines proof:

πt+1 = i ̸= ⋆ ⇐⇒ X⋆t +

√
2 log(t)
T⋆(t) ≤ Xit +

√
2 log(t)
Ti(t)

“ =⇒ ”∆i ≤

√
2 log(t)
Ti(t)

=⇒ Ti(t) ≲ log(t)
∆2

i

• Number of mistakes grows as log(t)
∆2

i
; each mistake costs ∆i.

Regret at stage T ≲
∑

i
log(T)
∆2

i
×∆i ≂

∑
i
log(T)
∆i

• “ =⇒ ” actually happens with overwhelming proba
• “optimal”: no algo with regret always smaller than

∑
i
log(T)
∆i
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Optimality of Thompson Sampling and UCB ?

• Intuitions:
• “Need” KL(θ, θ′) samples to distinguish between θ and θ′

• Each sample cost µ− µ′ in regret (with µ = EX∼θX).
• Regret should scale as

∑
i

µ∗−µi
KL(θi,θ∗)

≃
∑

i
1
∆i

• Formally, Lai & Robbins’85. Any “relevant” algorithm satisfies

lim inf
T→∞

RT
log(T) ≥

∑
i

µ∗ − µi
KL(θi, θ∗)

Relevant = expected regret always sub-polynomial.
• (variants of) UCB & Thompson Sampling “optimal”
Remark: minimax regret Ω(

√
KT)
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Extensions



Different Frameworks

• Best-Arm Identification
• Do not minimize regret, identify ⋆ = argmaxk µ

k

• Fixed budget of T samples. Minimize proba. of mistake
• Fixed confidence of δ ∈ [0, 1]. Minimize nb of samples

• Algo: similar to regret minimization (UCB, successive elimination)
• Contextual Bandits

• Reward depends on a covariate Zt
Observe Zt, pick kt, receive µkt(Xt) + noise

• Regularity assumptions: µk(·) linear, Lip., Holder, parametric....
• Algo: combine Non-parametric regression with UCB

• Typical regret in T
(

K
T

) β
2β+d for β-Holder and d-dim. covariates

• Many more
• Heavy-tail distribution, adversarial rewards (no assumption),...
• Complete/Partial/Graph/Costly/Delayed observations...
• Multi-player (with collisions, collusions, correlations...)
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