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Learning-Earning in Clinical Trials
Sequential (long) process. Decisions are sequential but learning is
compartmentalised

Figure: from “The role of health technology assessment bodies in shaping drug
development November 2014Drug Design, Development and Therapy
8(default):2273-2281” DOI:10.2147/DDDT.S49935



Learning-Earning in Clinical Trials

Current trend, increased uptake (but still slow) in Adaptive Designs - see
Pallmann et al (2018).

Figure: Figure from Pallmann et al (2018)

Bandit algorithms are a form of Adaptive designs (known in the biostatistics
literature as Response-Adaptive designs). Quote from Thompson 1933 paper
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What is a multi-armed bandit problem?

“In fact, the problem
represents in a simplified way the general question of how we learn

- or should learn - from past experience.” - Peter Whittle



The K-armed Bandit Problem

Bandit1 Bandit 2 ... Bandit K

How to optimally play this game? Depends on how we formulate it



The K-armed Bandit Problem

Bandit1 Bandit 2 ... Bandit K

How to optimally play this game? Depends on how we formulate it



The“Classic” Bayesian Bernouilli MABPs

A popular formulation is for a binary outcome Yk,t ∼ Bernoulli(pk):

• Temporal space: Discrete decision times t = {0, 1, . . . , t}
• State variable: Information state. Xk(t) , {Sk,t ,Fk,t}
• Action space: Decision variables. ak,t = {0, 1}

• Restrictions: Play only 1 bandit at a time
K∑

k=0

ak,t ≤ 1 : ∀t

• One-period Dynamics: Markovian transition probabilities
pak(x , y) , P(x → y) for every x , y ∈ Xk and a ∈ Ak (Bayes Update)

• Objective function: one-period reward function
Rk(xk(t), ak(t)) = ak,tE(Yk,t |xk,t)
• Time Horizon: T <∞ (Dynamic Programming) or T =∞

(Gittins’ Index) for 0 ≤ d < 1

This is one specific bandit formulation, there are many others out there!
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MABPS and the learning and earning objectives

Why this MABP formulation for clinical trials?

• Let π be a“playing strategy” (or sampling strategy)

Objective: play/sample to maximise the expected total
β-discounted rewards, given the initial information
I = (sk,0, fk,0)Kk=1:

ENS := EπI

[
T∑
t=0

K∑
k=1

ak,tYk,tβ
t

]
(1)

Q: How to make treatment allocations so as to treat as many of
these T patients effectively? −→ π∗ maximise (1)

Theory for discounted Markov Control Process ensures existence of
optimal solution π∗ for T →∞ (Bellman’s principle of optimality).



The Classic MABPs: from Formulations to Solutions

How can we optimally solve a classic MABP formulation?

(1) For T <∞, one can solve it by Dynamic Programming.

Note, brut force needs to explore 2T K possible states while a DP

algorithm performs (T−1)!
(2 K)!(T−2 K−1)! operations (Villar et al, 2015).

K = 2 Julia 1.0.1 RAM 31 GB T=300 1.6sec Tmax 1440 Jacko (2019)

(2) For T =∞ with 0 ≤ d < 1, the Gittins Index (GI) rule is optimal.
Computation time grows quadratically on T for a given state. Gittins and
Jones (1979)

(3) Strategies to nearly optimal solve (1) for large T . Heuristics: going from a
computationally feasible solution method to a satisfactory performance of
the objective. Examples are Thompson (1933); Villar et al (2015)



The challenge of balancing rewards and inference

• Set T = 148 and K = 2. Consider the following strategies in two
settings: a null and an alternative

H0 : p0 = p1 = 0.3 H1 : p0 = 0.3 , p1 = 0.5
α p∗ (s.d.) ENS (s.d.) 1− β p∗ (s.d.) ENS (s.d.)

ER 0.052 0.500 (0.04) 44.3 (5.6) 0.809 0.501 (0.04) 59.2 (6.0)
DP 0.028 0.500 (0.35) 44.4 (5.6) 0.078 0.888 (0.17) 70.7 (8.0)
TS 0.066 0.499 (0.10) 44.4 (5.6) 0.795 0.685 (0.09) 64.8 (6.6)
GI 0.053 0.501 (0.26) 44.4 (5.6) 0.364 0.862 (0.11) 70.2 (7.1)

Design Analysis. Comparison of the OCs of different two-arm trial designs of size T = 148. α: type I error; 1 − β: power;
p∗: expected number of patients assigned to best treatment; ENS: expected number of patient successes;

UB: upper bound. In Villar et al (2015); Villar and Jacko (2022)

ML Why ER? Typically the goal is optimise performance.

CT ER, sufficient power, good statistical properties (frequentist), simple
tests. Maximise Learning. Simplicity of design!
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MABP and the Gittins index for a clinical trial
Limitations

“ Their chief practical motivation comes from clinical trials...” -
John Gittins (’79 Biometrika).

Yet, bandit index rules are still to be applied to a real clinical trial.

Many important barriers to its practical implementation remain.

(1) Patients’ Outcomes Yk,t must be immediately available

(2) Optimal decisions are not randomized (potential for treatment
allocation bias)

(3) Insufficient statistical power to detect a relevant difference,
lack of type I error control

(4) Appropriate, valid and efficient tests in finite samples.

(5) Others (not obvious): bias in estimation of treatment effect
(typically over-estimation), temporal trends and error control,
how to deal with prognostic covariates and missing data, etc.
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1. Introducing Randomization to the Gittins Index Rule
The Forward Looking Gittins Index

Assume T patients are enrolled sequentially in groups of size b over J
stages, so that J × b = T is the trial size. In Villar et al (2015) we
defined group allocation probabilities based on the GI as follows:
Simplest example: b = 2. Priors: control (s(0,0), f(0,0)) = (1, 2) and experimental (s(1,0), f(1,0)) = (1, 1)

j = 1,
G1(1, 1) = 0.8699
G0(1, 2) = 0.7005

j = 2,
G1(1, 2) = 0.7005
G0(1, 2) = 0.7005

1
2

Y1,0 = 0

j = 2,
G1(2, 1) = 0.9102
G0(1, 2) = 0.7005

1
2

Y1,0
= 1

What is the (patient-average) probability of each arm being allocated in the next block using the GI (and given the priors)?

π1,0 =
(0 × 1) + (0 × 1/2 + 1/2 × 1/2)

2
= 1/8 , π1,1 =

(1 × 1) + (1 × 1/2 + 1/2 × 1/2)

2
= 7/8.
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FLGI Probabilities: Computation & Properties
A Non-myopic Group Randomised Procedure

C FLGI probabilities can be computed exactly but they are
computationally infeasible. Just as for the MABP, the computational
cost explodes with the number of arms (K ) and b (block size).

In practice, and in my papers computation done via Monte Carlo
simulation. Example: I = [1 1 ; 2 1 ; 1 2 ; 2 2] (K = 4) and block
b = 9 then π ≈ [0.2646 ; 0.5901 ; 0.0246 ; 0.1208] after 5 ∗ 102

replicas of 9 patients and 4 arms assigned via GI rule.

P1 For equal priors the algorithm defines equal allocation
probabilities or balanced sampling.

As the block size tends to grow (in the limit it equals the trial size
T ), the design tends to a balanced design (given initial equipoise).

If the block is of only 1 patient (i.e. there is an interim after every
patient), the FLGI rule recovers the GI rule.

P2 The choice of b controls the level of randomisation (impacts power).



2. Incorporating Covariate Information to the Gittins Index
Increasing Patient Benefit by Personalising Treatment

MABP with covariates: let patient outcome Yk,t ∼ Bernoulli(pk(zt))
where Zt ∼ Bernoulli(q) (with q known).

E.g., pk(zn) = Expit (αk + βkzt) ∀t, where Expit(u) = exp(u)
1+exp(u) .

For patient t, we observe their covariate value zt then we treat them.

P: What if patients in the two subgroups respond differently to treatment?
(treatment-covariate interaction)

• Solving the associated MABP with DP: computational complexity even
larger than in the classic case. (Deterministic)

Q: Can we define a simple randomised index rule in this case? Some work
in the literature: Clayton ’89; Woodroofe ’79

• In Villar and Rosenberger (2017): a heuristic (extended) FLGI rule for
a binary endpoint with a discrete covariate with C levels. Reformulated
MABP: for every treatment-covariate combination there exists a
combination arm kz . E.g., the arm “00” corresponds to the control arm
and covariate negative patients.



The CARA FLGI in Practice
Simulation Results

3-arm trial 300 patients pk0 = (0.22; 0.34; 0.49), pk,1 = (0.47; 0.71; 0.37).
Treatment-covariate interaction: best arm for covariate negative patients
is arm 2 while for covariate positive patients is arm 1.

Power Patient Benefit
(1− β0) (1− β1) p∗0 (s.d) p∗1 (s.d) ENS (s.d)

ER (b=300) 0.82 0.63 0.33 (0.04) 0.33 (0.04) 130.71 (9.3)
CARA CFLGI (b=10) 0.85 0.79 0.55 (0.16) 0.62 (0.06) 148.36 (9.6)

CARA FLGI (b=10) 0.13 0.03 0.75 (0.22) 0.86 (0.16) 166.73 (11.2)
CARA GI (b=1) 0.11 0.03 0.78 (0.24) 0.88 (0.18) 169.39 (11.4)

CARA FLGI probabilities (Monte Carlo simulation), T = 300, pz = 0.5 and 5000 runs.

• Treatment-covariate interactions are detected by the CARA
(Covariate-Adjusted Response Adaptive) FLGI procedure but its
statistical power is naturally very low.

• In a multi-armed case the CARA CFLGI addresses the power
limitation (though in a two-arm setting power may be insufficient).
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An allocation test for increased power for the FLGI
algorithms

In Barnett et al (2021), we present results for a new test, called QFLGI in
that paper, specifically designed for the GI designs in Villar et al (2015);
Villar and Rosenberger (2017)

• Effects on power: Q-test considerable increased power/ (no)
reduction in ENS (patient benefit). Still not ideal, further work
needed



Power for N=160 & B=2
Case study: 2-arm CT with 160 patients p0 = 0.5. FLGI versus ER for variuos p1

when covariate’s cardinality C increases
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Figure: Comparison of power for N = 160 & B = 2; rejection criteria adjusted for
type I error rate.
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Recent developments & Ongoing Debate

Response-adaptive randomization in clinical trials: from

myths to practical considerations

David S. Robertson1, Kim May Lee1, Boryana C. López-Kolkovska1, and Sof́ıa S. Villar ∗1

1MRC Biostatistics Unit, University of Cambridge, Cambridge, UK

Optimizing the Trade-off Between Learning
and Doing in a Pandemic

The world is united regarding the goal of ending the
coronavirus disease 2019 (COVID-19) pandemic but not
the strategy to achieve that goal. One stark example is
the debate over whether to prescribe available thera-
pies, such as quinine-based antimalarial drugs (eg, chlo-
roquine or hydroxychloroquine), or test these drugs in
randomized clinical trials (RCTs). At the heart of the
problem is one of the oldest dilemmas in human orga-
nizations: the “exploitation-exploration” trade-off.1

Exploitation refers to acting on current knowledge,
habits or beliefs despite uncertainty This is the “just do

ThreeMajor Challenges to LearningWhile Doing
The chief tool in the learning toolkit is the RCT, primar-
ily because randomization is such a powerful mecha-
nism for inferring causal effects. It is not perfect, and
there are alternatives, but in the absence of a miracle
drug that dramatically eradicates the disease, random-
izationwill becrucial todeterminewhat therapieswork.
There are, however, 3 major challenges.

Randomization is profoundlyuncomfortable.Kalil
has suggested that a clinician whowishes to administer
chloroquine(ratherthandefertorandomizedassignment)

VIEWPOINT

DerekC. Angus,MD,
MPH
University of Pittsburgh
and UPMCHealth
System, Pittsburgh,
Pennsylvania; and
Associate Editor, JAMA.

Opinion

. 2020 Dec 31;71(11):3002-3004. doi: 10.1093/cid/ciaa334.

Resist the Temptation of Response-Adaptive
Randomization

Michael Proschan , Scott Evans

Affiliations
PMID: 32222766  DOI: 10.1093/cid/ciaa334

Clin Infect Dis

  1   2

Abstract

Response-adaptive randomization (RAR) has recently gained popularity in clinical trials. The intent is
noble: minimize the number of participants randomized to inferior treatments and increase the
amount of information about better treatments. Unfortunately, RAR causes many problems, including

The Temptation of Overgeneralizing
Response-adaptive Randomization

  

Clinical Infectious Diseases, ciaa1027,
https://doi.org/10.1093/cid/ciaa1027
Published:  22 July 2020  Article history 

Sofía S Villar  , David S Robertson, William F Rosenberger

TO THE EDITOR—We read with interest the recent article by

Proschan and Evans [1] on the use of response-adaptive

randomization (RAR) and its potential problems; however,

these problems are neither new nor applicable in general to all



Concluding Remarks

• Bandit algorithms are a form of Adaptive designs. These can offer
ethical and efficiency advantages but will add complexity to analysis
to ensure validity.

• In many contexts, experiments have tight constraints on their size
(pilot studies) and/or need to“pick up” a signal early.

• Bandit algorithms (like the ones I described based on indices or DPs
ideas) result in a good solution to the above problem but ...

• substantial work is still needed to ensure validity and efficiency of
adaptive methods in accordance to the trials context and more
importantly to drive change in a very traditional community!



Questions?

Thank you for listening! sofia.villar@mrc-bsu.cam.ac.uk

Questions?

Bandit1 Bandit 2 ... Bandit K

With thanks to Bruno (my 5 yo) for these :)
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