La marche aléatoire de l'éléphant

Journées MAS

Lucile Laulin

29 août 2022, Rouen

1. The elephant random walk
2. An elephant inside an urn ?
3. An elephant in a tree ?

The elephant random walk

The Elephant Random Walk

The elephant random walk is a random walk on \mathbb{Z}.

The Elephant Random Walk

The elephant random walk is a random walk on \mathbb{Z}.
At time $n=0$

The Elephant Random Walk

The elephant random walk is a random walk on \mathbb{Z}.
At time $n=0$

A time $n=1$

The Elephant Random Walk

Let $n \geq 1$, at time $n+1$, the elephant chooses uniformly at random an instant k among the previous instants.

The Elephant Random Walk

Let $n \geq 1$, at time $n+1$, the elephant chooses uniformly at random an instant k among the previous instants. Then, according to p the memory parameter,

$$
x_{n+1}=\left\{\begin{array}{ccc}
+x_{k} & \text { with probability } & p \\
-x_{k} & \text { with probability } & 1-p
\end{array}\right.
$$

The position of the elephant is given by

$$
S_{n+1}=S_{n}+X_{n+1} .
$$

The Elephant Random Walk

Let $n \geq 1$, at time $n+1$, the elephant chooses uniformly at random an instant k among the previous instants. Then, according to p the memory parameter,

$$
x_{n+1}=\left\{\begin{array}{ccc}
+x_{k} & \text { with probability } & p, \\
-x_{k} & \text { with probability } & 1-p
\end{array}\right.
$$

The position of the elephant is given by

$$
S_{n+1}=S_{n}+X_{n+1} .
$$

A subject of interest

2004 Schütz and Trimper first introduced the Elephant Random Walk

A subject of interest

2004 Schütz and Trimper first introduced the Elephant Random Walk
2013 Schütz, Trimper et al. - Non-gaussian propagator for ERWs

A subject of interest

2004 Schütz and Trimper first introduced the Elephant Random Walk
2013 Schütz, Trimper et al. - Non-gaussian propagator for ERWs
2015 Kürsten - Random Recursive Trees and ERW

A subject of interest

2004 Schütz and Trimper first introduced the Elephant Random Walk
2013 Schütz, Trimper et al. - Non-gaussian propagator for ERWs
2015 Kürsten - Random Recursive Trees and ERW
2016 Baur and Bertoin - Connection between ERW and Pòlya-type urns

A subject of interest

2004 Schütz and Trimper first introduced the Elephant Random Walk

2013 Schütz, Trimper et al. - Non-gaussian propagator for ERWs
2015 Kürsten - Random Recursive Trees and ERW
2016 Baur and Bertoin - Connection between ERW and Pòlya-type urns
2017 Colleti, Schütz et al. - Strong invariance principle and CLT
2018 Bercu - A martingale approach (LLN, LIL, QSL and CLT)
Businger - The Shark Random Swim
2019 Bercu, Chabanol, Ruch - Hypergeometric identities from the ERW Bercu and L. - Multidimensional ERW
Kubota and Takei - Gaussian fluctuations in the superdiffusive regime Vázquez Guevara - Almost sure CLT
2020 Bertenghi - Functional limit theorems for the MERW
Bertoin - Counterbalancing steps at random in a random walk
Baur - A class of reinforced RW (including ERW) using Pòlya-type urns
Bercu and L. - The center of mass of the ERW
2021 Bertoin - Counting the zeros of the ERW
L. - New insights on the RERW using a martingale approach

20225 more so far!

A martingale approach

We can write $X_{n+1}=\alpha_{n+1} X_{\beta_{n+1}}$ where the random variables

$$
\alpha_{n+1} \sim \mathcal{R}(p), \quad \beta_{n+1} \sim \mathcal{U}(1, \ldots, n)
$$

are mutually independant and independant of $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

A martingale approach

We can write $X_{n+1}=\alpha_{n+1} X_{\beta_{n+1}}$ where the random variables

$$
\alpha_{n+1} \sim \mathcal{R}(p), \quad \beta_{n+1} \sim \mathcal{U}(1, \ldots, n)
$$

are mutually independant and independant of $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
Then,

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}=1 \mid \mathcal{F}_{n}\right) & =p \frac{\#\{\text { steps to the right }\}}{n}+(1-p) \frac{\#\{\text { steps to the left }\}}{n} \\
& =\frac{1}{2}\left(1+(2 p-1) \frac{S_{n}}{n}\right) .
\end{aligned}
$$

A martingale approach

We can write $X_{n+1}=\alpha_{n+1} X_{\beta_{n+1}}$ where the random variables

$$
\alpha_{n+1} \sim \mathcal{R}(p), \quad \beta_{n+1} \sim \mathcal{U}(1, \ldots, n)
$$

are mutually independant and independant of $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
Then,

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}=1 \mid \mathcal{F}_{n}\right) & =p \frac{\#\{\text { steps to the right }\}}{n}+(1-p) \frac{\#\{\text { steps to the left }\}}{n} \\
& =\frac{1}{2}\left(1+(2 p-1) \frac{S_{n}}{n}\right) .
\end{aligned}
$$

The conditional distribution of X_{n+1} given the past is

$$
\mathcal{L}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\mathcal{R}\left(p_{n}\right)
$$

where $p_{n}=\frac{1}{2}\left(1+a \frac{S_{n}}{n}\right)$ and $a=2 p-1$.

A martingale approach

We deduce that

$$
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\left(2 p_{n}-1\right)=\left(1+\frac{a}{n}\right) S_{n}=\gamma_{n} S_{n} .
$$

A martingale approach

We deduce that

$$
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\left(2 p_{n}-1\right)=\left(1+\frac{a}{n}\right) S_{n}=\gamma_{n} S_{n}
$$

The study relies on a martingale approach

$$
M_{n}=a_{n} S_{n}
$$

where $a_{1}=1$ and

$$
a_{n}=\prod_{k=1}^{n-1} \gamma_{k}^{-1}=\frac{\Gamma(a+1) \Gamma(n)}{\Gamma(n+a)}
$$

A martingale approach

We deduce that

$$
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\left(2 p_{n}-1\right)=\left(1+\frac{a}{n}\right) S_{n}=\gamma_{n} S_{n} .
$$

The study relies on a martingale approach

$$
M_{n}=a_{n} S_{n}
$$

where $a_{1}=1$ and

$$
a_{n}=\prod_{k=1}^{n-1} \gamma_{k}^{-1}=\frac{\Gamma(a+1) \Gamma(n)}{\Gamma(n+a)}
$$

The process $\left(M_{n}\right)$ is a locally bounded square-integrable martingale. Indeed,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=a_{n+1} \mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=a_{n+1} \gamma_{n} S_{n}=a_{n} S_{n}=M_{n}
$$

and $\mathbb{E}\left[M_{n}^{2}\right] \leq\left(n a_{n}\right)^{2}$.

Three regimes

We find that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2}
$$

Three regimes

We find that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2}
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.

Three regimes

We find that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.
Thanks to asymptotical equivalent for the Gamma function, we obtain three different regimes for the elephant's behavior :

Three regimes

We find that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.
Thanks to asymptotical equivalent for the Gamma function, we obtain three different regimes for the elephant's behavior :
, the diffusive regime where $a<1 / 2$ and $v_{n}=O\left(n^{1-2 a}\right)$,

Three regimes

We find that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.
Thanks to asymptotical equivalent for the Gamma function, we obtain three different regimes for the elephant's behavior :
, the diffusive regime where $a<1 / 2$ and $v_{n}=O\left(n^{1-2 a}\right)$,
, the critical regime where $a=1 / 2$ and $v_{n}=O(\log n)$,

Three regimes

We find that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.
Thanks to asymptotical equivalent for the Gamma function, we obtain three different regimes for the elephant's behavior :
, the diffusive regime where $a<1 / 2$ and $v_{n}=O\left(n^{1-2 a}\right)$,
, the critical regime where $a=1 / 2$ and $v_{n}=O(\log n)$,
, the superdiffusive regime where $a>1 / 2$ and $v_{n}=O(1)$.

Main results

Theorem (Law of large numbers)

$$
\begin{array}{cc}
\text { Diffusive } & \text { Critical } \\
\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \stackrel{\text { a.s. }}{=} 0 & \lim _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n} \log n} \stackrel{\text { a.s. }}{=} 0
\end{array}
$$

Superdiffusive
$\lim _{n \rightarrow \infty} \frac{S_{n}}{n^{a}} \stackrel{\text { a.s. } / \mathbb{L}^{4}}{=} L$

Main results

Theorem (Law of large numbers)

$$
\begin{array}{cc}
\text { Diffusive } & \text { Critical } \\
\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \stackrel{\text { a.s. }}{=} 0 & \lim _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n} \log n} \stackrel{\text { a.s. }}{=} 0
\end{array}
$$

Superdiffusive

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{n^{a}} \stackrel{a . S .}{=} / \mathbb{L}^{4} L
$$

Theorem (Quadratic strong law and law of iterated logarithm)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n}\left(\frac{S_{k}}{k}\right)^{2} \stackrel{\text { a.s. }}{=} \frac{1}{1-2 a} \\
& \limsup _{n \rightarrow \infty} \frac{S_{n}^{2}}{2 n \log \log n} \stackrel{\text { a.s. }}{=} \frac{1}{1-2 a}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{\log \log n} \sum_{k=1}^{n}\left(\frac{S_{k}}{k \log k}\right)^{2} \stackrel{\text { a.s. }}{=} 1 \\
& \limsup _{n \rightarrow \infty} \frac{S_{n}^{2}}{2 n \log n \log \log \log n} \stackrel{\text { a.s. }}{=} 1
\end{aligned}
$$

Main results

Theorem (Law of large numbers)

$$
\begin{array}{cc}
\text { Diffusive } & \text { Critical } \\
\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \stackrel{\text { a.s. }}{=} 0 & \lim _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n} \log n} \stackrel{\text { a.s. }}{=} 0
\end{array}
$$

Superdiffusive

Theorem (Quadratic strong law and law of iterated logarithm)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n}\left(\frac{S_{k}}{k}\right)^{2} \stackrel{\text { a.s. }}{=} \frac{1}{1-2 a} \\
& \limsup _{n \rightarrow \infty} \frac{S_{n}^{2}}{2 n \log \log n} \stackrel{\text { a.s. }}{=} \frac{1}{1-2 a}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{\log \log n} \sum_{k=1}^{\text {Critical }}\left(\frac{S_{k}}{k \log k}\right)^{2} \stackrel{\text { a.s. }}{=} 1 \\
& \limsup _{n \rightarrow \infty} \frac{S_{n}^{2}}{2 n \log n \log \log \log n} \stackrel{\text { a.s. }}{=} 1
\end{aligned}
$$

Theorem (Asymptotic normality)

Diffusive
Critical
$\frac{S_{n}}{\sqrt{n}} \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{1-2 a}\right) \quad \frac{S_{n}}{\sqrt{n \log n}} \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}(0,1) \quad \frac{S_{n}-n^{a} L}{\sqrt{n}} \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{2 a-1}\right)$

An elephant inside an urn ?

Pólya urn processes

At the inital time $n=0$, an urn is filled with $\alpha \geq 0$ red balls and $\beta \geq 0$ blue balls. Then, at any time $n \geq 1$ one ball is picked randomly from the urn and its color observed. If it is red (blue) it is then returned to the urn together with a additional red (c red) balls and $b \geq 0$ blue ($d \geq 0$ blue) ones.

Pólya urn processes

At the inital time $n=0$, an urn is filled with $\alpha \geq 0$ red balls and $\beta \geq 0$ blue balls. Then, at any time $n \geq 1$ one ball is picked randomly from the urn and its color observed. If it is red (blue) it is then returned to the urn together with a additional red (cred) balls and $b \geq 0$ blue ($d \geq 0$ blue) ones. The model corresponding replacement matrix is given by

$$
R=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

Pólya urn processes

At the inital time $n=0$, an urn is filled with $\alpha \geq 0$ red balls and $\beta \geq 0$ blue balls. Then, at any time $n \geq 1$ one ball is picked randomly from the urn and its color observed. If it is red (blue) it is then returned to the urn together with a additional red (c red) balls and $b \geq 0$ blue ($d \geq 0$ blue) ones. The model corresponding replacement matrix is given by

$$
R=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

We assume that the urn is balanced, $S=a+b=c+d \geq 1$. S is the maximum eigenvalue of R and the second eigenvalue of R is given by $m=a-c=d-b$, with respective eigenvectors

$$
v_{1}=\frac{S}{b+c}\binom{c}{b} \quad \text { and } \quad v_{2}=\frac{S}{b+c}\binom{1}{-1}
$$

We denote $\sigma=m / S<1$ the ratio of the two eigenvalues.

ERW and Pólya urns

Notice the two matching cases:

ERW and Pólya urns

Notice the two matching cases:
, the ERW when $p=1$ has the same distribution as the PUP with $R=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ that is the traditionnal Pólya urn process,

ERW and Pólya urns

Notice the two matching cases:
, the ERW when $p=1$ has the same distribution as the PUP with $R=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ that is the traditionnal Pólya urn process,
, the ERW when $p=0$ has the same distribution as the PUP with $R=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

ERW and Pólya urns

Notice the two matching cases:
, the ERW when $p=1$ has the same distribution as the PUP with $R=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ that is the traditionnal Pólya urn process,
, the ERW when $p=0$ has the same distribution as the PUP with $R=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

What about $0<p<1$?

A more generalized model of Pólya urns

S. Janson - Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Processes and their Applications 110 (2004)

A more generalized model of Pólya urns

S. Janson - Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Processes and their Applications 110 (2004)
E. Baur and J. Bertoin - Elephant random walks and their connection to Pólya-type urns. Physical review. E 94 (2016).

A more generalized model of Pólya urns

S. Janson - Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Processes and their Applications 110 (2004)
E. Baur and J. Bertoin - Elephant random walks and their connection to Pólya-type urns. Physical review. E 94 (2016).

In this case the replacement matrix R becomes the mean replacement matrix A such that

$$
A=\left(\mathbb{E}\left[\theta_{i, j}\right]\right)_{1 \leq i, j \leq q}
$$

where q is the number of colors and $\theta_{i, j}$ is the random variable saying how many balls of type j are added when a ball of type i is picked.

The ERW and the associated Pólya urn

Let $U_{n}=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection :

The ERW and the associated Pólya urn

Let $U_{n}=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection:

The ERW and the associated Pólya urn

Let $U_{n}=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection :

picking	remembering
(1)	going right
(1)	going left

adding	meaning
(1)	1 step to the right
(1)	1 step to the left

The ERW and the associated Pólya urn

Let $U_{n}=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection:

picking	remembering
(1)	going right
1	going left

adding	meaning
(1)	1 step to the right
(1)	1 step to the left

such that

$$
\theta_{1}=\left\{\begin{array}{l}
\binom{1}{0} \\
p \\
\binom{0}{1} \\
1-p
\end{array} \quad \text { and } \quad \theta_{2}=1-\theta_{1} \quad \text { and } \quad A=\left(\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right) .\right.
$$

The ERW and the associated Pólya urn

Let $U_{n}=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection:

picking	remembering
(1)	going right
1	going left

adding	meaning
(1)	1 step to the right
(1)	1 step to the left

such that

$$
\theta_{1}=\left\{\begin{array}{l}
\binom{1}{0} \\
p \\
\binom{0}{1} \\
1-p
\end{array} \quad \text { and } \quad \theta_{2}=1-\theta_{1} \quad \text { and } \quad A=\left(\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right) .\right.
$$

In this case, S_{n} has the same distribution as $R_{n}-B_{n}=2 R_{n}-n$.

An elephant in a tree ?

Random recursive tree and Bernoulli percolation

Random recursive tree and Bernoulli percolation

Random recursive tree and Bernoulli percolation

(5)

Random recursive tree and Bernoulli percolation

Other definition of the ERW

Let $\left(X_{n}\right)$ be a sequence of i.i.d. random variables with law $\mathcal{R}(1 / 2)$ and $\left(\varepsilon_{n}\right)$ a sequence of i.i.d. Bernoulli random variables with parameter a. Then, set $\hat{X}_{1}=X_{1}$ and, for $n \geq 1$, choose an instant k among the previous instants such that

$$
\hat{X}_{n+1}= \begin{cases}X_{1+\sigma(n+1)} & \text { if } \varepsilon_{n+1}=0 \\ \hat{X}_{k} & \text { if } \varepsilon_{n+1}=1\end{cases}
$$

where $\sigma(n)=\sum_{k=2}^{n}\left(1-\varepsilon_{k}\right)$ is counting the number of inovations up to time $n \geq 2$.

Other definition of the ERW

Let $\left(X_{n}\right)$ be a sequence of i.i.d. random variables with law $\mathcal{R}(1 / 2)$ and $\left(\varepsilon_{n}\right)$ a sequence of i.i.d. Bernoulli random variables with parameter a. Then, set $\hat{X}_{1}=X_{1}$ and, for $n \geq 1$, choose an instant k among the previous instants such that

$$
\hat{X}_{n+1}= \begin{cases}x_{1+\sigma(n+1)} & \text { if } \varepsilon_{n+1}=0 \\ \hat{X}_{k} & \text { if } \varepsilon_{n+1}=1\end{cases}
$$

where $\sigma(n)=\sum_{k=2}^{n}\left(1-\varepsilon_{k}\right)$ is counting the number of inovations up to time $n \geq 2$.
Kürsten explained that the sequence

$$
\hat{S}_{n}=\hat{X}_{1}+\ldots+\hat{X}_{n}
$$

is the elephant random walk with memory parameter $p \in(1 / 2,1)$.

Other definition of the ERW

Let $\left(X_{n}\right)$ be a sequence of i.i.d. random variables with law $\mathcal{R}(1 / 2)$ and $\left(\varepsilon_{n}\right)$ a sequence of i.i.d. Bernoulli random variables with parameter a. Then, set $\hat{X}_{1}=X_{1}$ and, for $n \geq 1$, choose an instant k among the previous instants such that

$$
\hat{X}_{n+1}= \begin{cases}X_{1+\sigma(n+1)} & \text { if } \varepsilon_{n+1}=0 \\ \hat{X}_{k} & \text { if } \varepsilon_{n+1}=1\end{cases}
$$

where $\sigma(n)=\sum_{k=2}^{n}\left(1-\varepsilon_{k}\right)$ is counting the number of inovations up to time $n \geq 2$.
Kürsten explained that the sequence

$$
\hat{S}_{n}=\hat{X}_{1}+\ldots+\hat{X}_{n}
$$

is the elephant random walk with memory parameter $p \in(1 / 2,1)$. Consequently, if $a>1 / 2(p>3 / 4)$ we know that

$$
\lim _{n \rightarrow \infty} \frac{\hat{S}_{n}}{n^{a}}=L \quad \text { a.s. and in } \mathbb{L}^{2}
$$

ERW, random recursive trees and Bernoulli percolation

The previous approach can also be seen as a sequence of random recursive trees on which a Bernoulli percolation of parameter a has been performed.

ERW, random recursive trees and Bernoulli percolation

The previous approach can also be seen as a sequence of random recursive trees on which a Bernoulli percolation of parameter a has been performed. In that setting, we denote the i-th cluster at time n

$$
c_{n}(i)=\left\{j \leq n, \hat{X}_{j}=X_{i}\right\}
$$

in the way that

$$
\hat{S}_{n}=\sum_{i=1}^{\infty}\left|c_{n}(i)\right| X_{i}
$$

where the clusters are independant of the $\left(X_{i}\right)$.

ERW, random recursive trees and Bernoulli percolation

The previous approach can also be seen as a sequence of random recursive trees on which a Bernoulli percolation of parameter a has been performed. In that setting, we denote the i-th cluster at time n

$$
c_{n}(i)=\left\{j \leq n, \hat{X}_{j}=X_{i}\right\}
$$

in the way that

$$
\hat{S}_{n}=\sum_{i=1}^{\infty}\left|c_{n}(i)\right| X_{i}
$$

where the clusters are independant of the $\left(X_{i}\right)$. We denote by τ_{i} the first instant at which the i-th cluster is not empty, $\tau_{i}=\inf \left\{j \geq 1, \hat{X}_{j}=X_{i}\right\}=\inf \{j \geq 1, \sigma(j)=i-1\}$ with $\tau_{1}=1$.

ERW, random recursive trees and Bernoulli percolation

The previous approach can also be seen as a sequence of random recursive trees on which a Bernoulli percolation of parameter a has been performed. In that setting, we denote the i-th cluster at time n

$$
c_{n}(i)=\left\{j \leq n, \hat{X}_{j}=x_{i}\right\}
$$

in the way that

$$
\hat{S}_{n}=\sum_{i=1}^{\infty}\left|c_{n}(i)\right| X_{i}
$$

where the clusters are independant of the $\left(X_{i}\right)$. We denote by τ_{i} the first instant at which the i-th cluster is not empty, $\tau_{i}=\inf \left\{j \geq 1, \hat{X}_{j}=X_{i}\right\}=\inf \{j \geq 1, \sigma(j)=i-1\}$ with $\tau_{1}=1$. Moreover, we have that

$$
\left|c_{n+1}(i)\right|=\left\{\begin{array}{cl}
0 & \text { if } n<\tau_{i} \\
1 & \text { if } n=\tau_{i} \\
\left|c_{n}(i)\right|+\mathbb{1}_{\hat{x}_{n+1}=x_{i}} \mathbb{1}_{\varepsilon_{n+1}=1} & \text { if } n>\tau_{i}
\end{array}\right.
$$

An example

New insights on L

It has been proved that (see e.g. Baur and Bertoin, 2016)

$$
\lim _{n \rightarrow \infty} \frac{\left|c_{n}(i)\right|}{n^{a}}=\Gamma_{i} \quad \text { a.s. }
$$

New insights on L

It has been proved that (see e.g. Baur and Bertoin, 2016)

$$
\lim _{n \rightarrow \infty} \frac{\left|c_{n}(i)\right|}{n^{a}}=\Gamma_{i} \quad \text { a.s. }
$$

such that Γ_{1} has a Mittag-Leffler distribution with parameter a and Γ_{i} a random variable with the same law as $\left(\beta_{\tau_{i}}\right)^{a} \cdot \Gamma_{1}$, where β_{i} denotes a beta variable with parameter $(1, i-1)$ and is further independent of Γ_{1}.

New insights on L

It has been proved that (see e.g. Baur and Bertoin, 2016)

$$
\lim _{n \rightarrow \infty} \frac{\left|c_{n}(i)\right|}{n^{a}}=\Gamma_{i} \quad \text { a.s. }
$$

such that Γ_{1} has a Mittag-Leffler distribution with parameter a and Γ_{i} a random variable with the same law as $\left(\beta_{\tau_{i}}\right)^{a} \cdot \Gamma_{1}$, where β_{i} denotes a beta variable with parameter $(1, i-1)$ and is further independent of Γ_{1}.

Consequently, it is possible to obtain the following decomposition of L
The distribution of L

$$
L=\sum_{i=1}^{\infty} \Gamma_{i} \cdot X_{i}
$$

Merci pour votre attention!

