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1. The elephant random walk

2. An elephant inside an urn ?

3. An elephant in a tree ?
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The Elephant Random Walk

The elephant random walk is a random walk on Z.

At time n = 0

−1 0 1

A time n = 1

−1 0 1

q1− q
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The Elephant Random Walk

Let n ≥ 1, at time n+ 1, the elephant chooses uniformly at random an instant k among

the previous instants.

Then, according to p the memory parameter,

Xn+1 =

 +Xk with probability p,

−Xk with probability 1− p.

The position of the elephant is given by

Sn+1 = Sn + Xn+1.

0 1 Sn

p1− p

1− pp

(Xk = −1) (Xk = +1)
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A subject of interest

2004 Schütz and Trimper first introduced the Elephant Random Walk

2013 Schütz, Trimper et al. – Non-gaussian propagator for ERWs

2015 Kürsten – Random Recursive Trees and ERW

2016 Baur and Bertoin – Connection between ERW and Pòlya-type urns

2017 Colleti, Schütz et al. – Strong invariance principle and CLT

2018 Bercu – A martingale approach (LLN, LIL, QSL and CLT)

Businger - The Shark Random Swim

2019 Bercu, Chabanol, Ruch – Hypergeometric identities from the ERW

Bercu and L. – Multidimensional ERW

Kubota and Takei – Gaussian fluctuations in the superdiffusive regime

Vázquez Guevara – Almost sure CLT

2020 Bertenghi – Functional limit theorems for the MERW

Bertoin – Counterbalancing steps at random in a random walk

Baur – A class of reinforced RW (including ERW) using Pòlya-type urns

Bercu and L. – The center of mass of the ERW

2021 Bertoin – Counting the zeros of the ERW

L. – New insights on the RERW using a martingale approach

2022 5 more so far !
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A martingale approach

We can write Xn+1 = αn+1Xβn+1
where the random variables

αn+1 ∼ R(p), βn+1 ∼ U(1, . . . ,n)

are mutually independant and independant of Fn = σ(X1, . . . , Xn).

Then,

P(Xn+1 = 1|Fn) = p
#{steps to the right}

n
+ (1− p)

#{steps to the left}
n

=
1

2

(
1+ (2p− 1)

Sn

n

)
.

The conditional distribution of Xn+1 given the past is

L(Xn+1|Fn) = R(pn)

where pn =
1

2

(
1+ a

Sn

n

)
and a = 2p− 1.
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A martingale approach

We deduce that

E[Sn+1|Fn] = Sn + E[Xn+1|Fn] = Sn + (2pn − 1) =
(
1+

a

n

)
Sn = γnSn.

The study relies on a martingale approach

Mn = anSn

where a1 = 1 and

an =
n−1∏
k=1

γ−1
k

=
Γ(a+ 1)Γ(n)

Γ(n+ a)
.

The process (Mn) is a locally bounded square-integrable martingale. Indeed,

E[Mn+1|Fn] = an+1E[Sn+1|Fn] = an+1γnSn = anSn = Mn

and E[M2
n] ≤ (nan)

2.
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Three regimes

We find that

〈M〉n =
n∑

k=1

a2k − a2
n∑

k=1

a2k

(Sk
k

)2
.

The asymptotical behavior of 〈M〉n is closely related to the one of

vn =
n∑

k=1

a2k

as 〈M〉n = O(vn) almost surely.

Thanks to asymptotical equivalent for the Gamma function, we obtain three different

regimes for the elephant’s behavior :

› the diffusive regime where a < 1/2 and vn = O(n1−2a),

› the critical regime where a = 1/2 and vn = O(log n),

› the superdiffusive regime where a > 1/2 and vn = O(1).
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Main results

Theorem (Law of large numbers)

Diffusive

lim
n→∞

Sn

n

a.s.
= 0

Critical

lim
n→∞

Sn√
n log n

a.s.
= 0

Superdiffusive

lim
n→∞

Sn

na
a.s./L4

= L

Theorem (Quadratic strong law and law of iterated logarithm)

Diffusive

lim
n→∞

1

log n

n∑
k=1

(Sk
k

)2 a.s.
=

1

1− 2a

lim sup
n→∞

S2n
2n log log n

a.s.
=

1

1− 2a

Critical

lim
n→∞

1

log log n

n∑
k=1

( Sk
k log k

)2 a.s.
= 1

lim sup
n→∞

S2n
2n log n log log log n

a.s.
= 1

Theorem (Asymptotic normality)

Diffusive

Sn√
n

L−→
n→∞

N
(
0,

1

1− 2a

) Critical

Sn√
n log n

L−→
n→∞

N
(
0, 1
) Superdiffusive

Sn − naL√
n

L−→
n→∞

N
(
0,

1

2a− 1

)
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An elephant inside an urn ?



Pólya urn processes

At the inital time n = 0, an urn is filled with α ≥ 0 red balls and β ≥ 0 blue balls. Then,

at any time n ≥ 1 one ball is picked randomly from the urn and its color observed. If it

is red (blue) it is then returned to the urn together with a additional red (c red) balls

and b ≥ 0 blue (d ≥ 0 blue) ones.

The model corresponding replacement matrix is

given by

R =

(
a c

b d

)
.

We assume that the urn is balanced, S = a + b = c + d ≥ 1. S is the maximum

eigenvalue of R and the second eigenvalue of R is given by m = a− c = d− b, with

respective eigenvectors

v1 =
S

b+ c

(
c

b

)
and v2 =

S

b+ c

(
1

−1

)
.

We denote σ = m/S < 1 the ratio of the two eigenvalues.

12
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ERW and Pólya urns

Notice the two matching cases :

› the ERW when p = 1 has the same distribution as the PUP with R =

(
1 0

0 1

)
that

is the traditionnal Pólya urn process,

› the ERW when p = 0 has the same distribution as the PUP with R =

(
0 1

1 0

)
.

What about 0 < p < 1 ?

13
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A more generalized model of Pólya urns

S. Janson – Functional limit theorems for multitype branching processes and general-

ized Pólya urns. Stochastic Processes and their Applications 110 (2004)

E. Baur and J. Bertoin – Elephant random walks and their connection to Pólya-type

urns. Physical review. E 94 (2016).

In this case the replacement matrix R becomes the mean replacement matrix A such

that

A =
(
E[θi,j]

)
1≤i,j≤q

where q is the number of colors and θi,j is the random variable saying how many balls

of type j are added when a ball of type i is picked.

14
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The ERW and the associated Pólya urn

Let Un =

(
Rn

Bn

)
be an urn filled with red and blue balls. We make the following con-

nection :

picking remembering

1 going right

1 going left

and

adding meaning

1 1 step to the right

1 1 step to the left

such that

θ1 =



(
1

0

)
p

(
0

1

)
1− p

and θ2 = 1− θ1 and A =

(
p 1− p

1− p p

)
.

In this case, Sn has the same distribution as Rn − Bn = 2Rn − n.
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An elephant in a tree ?



Random recursive tree and Bernoulli percolation
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Other definition of the ERW

Let (Xn) be a sequence of i.i.d. random variables with law R(1/2) and (εn) a sequence

of i.i.d. Bernoulli random variables with parameter a. Then, set X̂1 = X1 and, for n ≥ 1,

choose an instant k among the previous instants such that

X̂n+1 =

{
X1+σ(n+1) if εn+1 = 0,

X̂k if εn+1 = 1,

where σ(n) =
∑n

k=2(1− εk) is counting the number of inovations up to time n ≥ 2.

Kürsten explained that the sequence

Ŝn = X̂1 + . . .+ X̂n,

is the elephant random walk with memory parameter p ∈ (1/2, 1). Consequently, if

a > 1/2 (p > 3/4) we know that

lim
n→∞

Ŝn

na
= L a.s. and in L2.
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ERW, random recursive trees and Bernoulli percolation

The previous approach can also be seen as a sequence of random recursive trees on

which a Bernoulli percolation of parameter a has been performed.

In that setting, we

denote the i-th cluster at time n

cn(i) =
{
j ≤ n, X̂j = Xi

}
in the way that

Ŝn =
∞∑
i=1

|cn(i)|Xi

where the clusters are independant of the (Xi). We denote by τi the first instant at

which the i-th cluster is not empty, τi = inf
{
j ≥ 1, X̂j = Xi

}
= inf

{
j ≥ 1, σ(j) = i − 1

}
with τ1 = 1. Moreover, we have that

|cn+1(i)| =


0 if n < τi,

1 if n = τi,

|cn(i)|+ 1X̂n+1=Xi
1εn+1=1 if n > τi.
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An example
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New insights on L

It has been proved that (see e.g. Baur and Bertoin, 2016)

lim
n→∞

|cn(i)|
na

= Γi a.s.

such that Γ1 has a Mittag-Leffler distribution with parameter a and Γi a random variable

with the same law as (βτi)
a ·Γ1, where βi denotes a beta variable with parameter (1, i−1)

and is further independent of Γ1.

Consequently, it is possible to obtain the following decomposition of L

The distribution of L

L =
∞∑
i=1

Γi · Xi.
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Merci pour votre attention !
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