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Overview



What is the talk about?

Landscape complexity:

∗ Goal: For random functions fN : RN → R, compute the annealed complexity:

Σ = lim
N→∞

1
N
log E Crt(fN) = lim

N→∞

1
N
log E [#{x : ∇fN(x) = 0}] ,

i.e.,
E Crt(fN) ≈ eNΣ for large N.

∗ We consider a model of the type

fN(x) = signalN(x) + noiseN(x),

and we identify a phase transition.
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What is this talk about?

Spiked tensor model:

Definition
The spiked tensor model is defined as

Y = λu⊗p +
1

√
N
J,

where

∗ Y ∈ (RN)⊗p is the p-th order tensor observation

∗ J ∈ (RN)⊗p is a p-th order noise tensor whose entries are Ji1 i2...ip
iid∼ N (0, 1)

∗ λ > 0 is the signal-to-noise ratio

∗ u ∈ SN−1 is an unknown signal vector to be recovered

Introduced by Richard, Montanari 2014.
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What is this talk about?

Recall the rank-1 spiked tensor model: Y = λu⊗p + 1√
N
J.

Tensor PCA
Themaximum likelihood estimation requires solving

maximize fp(σ) = ⟨Y,σ⊗p⟩

subject to σ ∈ SN−1.
(1)

The landscape of the optimization problem (1) is the function fp : SN−1 → R:

fp(σ) = ⟨Y,σ⊗p⟩ = λ⟨u,σ⟩p +
1

√
N

N∑
i1,...,ip=1

Ji1...ipσi1 · · ·σip .

∗ More general things we can look at: The set of all critical points, the set of all local
maxima, etc.

∗ Questions we can ask: Where are the critical points located? How far are they from u?
What is the energy value of the critical points?
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Landscape complexity of the rank-1
spiked tensor model



Landscape complexity

Recall:

fp(σ) = λ⟨u,σ⟩p +
1

√
N

N∑
i1,...,ip=1

Ji1...ipσi1 · · ·σip .

ForM ⊂ (−1, 1) and E ⊂ R, define

CrtN,∗(M, E) :=
∑

σ:grad fp(σ)=0

1{⟨σ, u⟩ ∈ M}1{fp(σ) ∈ E}.

Theorem (Ben Arous et al. 2019)
LetM ⊂ (−1, 1) and let E ⊂ R. Then:

E CrtN,∗(M, E) ≈ exp

{
N sup

(m,x)∈M×E
S∗(m, x)

}
,

where S∗ is a nasty but explicit function.

∗ There is another function S0 satisfying an analogue for local maxima.
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Location of critical points for r = 1

Consider
S∗(m) = max

x
S∗(m, x),

which gives the exponential growth rate of the number of critical points at
⟨u,σ⟩ = m ∈ [0, 1].
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Location of critical points for r = 1
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Location of critical points for r = 1

Proposition (Ben Arous et al. 2019)
Let

λc :=

√
1
2p

(p− 1)p−1

(p− 2)p−2 .

Then:

∗ If λ < λc, then there are no “good” critical points.

∗ If λ ≥ λc, then S∗(m) = 0 at the point where

m2p−4(1−m2) =
1

2pλ2 .
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Rank-r spiked tensor model



Rank-r spiked tensor model

Definition
The rank-r spiked tensor model is defined as

Y =
r∑

i=1

λiu
⊗p
i +

1
√
N
J,

where

∗ λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the signal-to-noise ratios

∗ u1, u2, . . . , ur ∈ SN−1 are r unknown orthogonal signal vectors

We consider the random function fp : SN−1 → R:

fp(σ) = ⟨Y,σ⊗p⟩ =
r∑

i=1

λi⟨ui,σ⟩p +
1

√
N

N∑
i1,...,ip=1

Ji1...ipσi1 · · ·σip .
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Landscape complexity

For anyM1, . . . ,Mr ⊂ (−1, 1) and E ⊂ R, define

CrtN,∗(M, E) :=
∑

σ:grad fp(σ)=0

1{⟨σ, ui⟩ ∈ Mi, 1 ≤ i ≤ r}1{fp(σ) ∈ E}.

Theorem (P. 2022)
LetM = M1 × · · · × Mr ⊂ (−1, 1)r and E ⊂ R. Then:

E CrtN,∗(M, E) ≈ exp

{
N sup

(m,x)∈M×E
S∗(m, x)

}
,

where S∗ is a nasty but explicit function.

∗ There is another function S0 satisfying an analogue for local maxima.

∗ For the special case r = 1, the theorem reduces to the result proved in Ben Arous et al.
2019.
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Location of critical points for r = 2

S∗(m) = maxx S∗(m, x) gives the exponential growth rate of the number of critical points at
⟨u1,σ⟩ = m1 and ⟨u2,σ⟩ = m2.
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Location of critical points for r = 2
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Location of critical points for r = 2
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Location of critical points for r = 2
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Location of critical points for finite r

Proposition (P. 2022)
Let

η(m) :=
r∑

i=1

λ
− 2

p−2
i 1{mi ̸= 0} and ηc := (p− 2)

(
2p

(p− 1)p−1

) 1
p−2

.

Then:

∗ If η(m) > ηc, then the “good” critical points are exponentially rare.

∗ If η(m) ≤ ηc, then S∗(m) = 0 at the points where

r∑
i=1

λim
p
i =

1
√
2p

∑r
i=1 m

2
i√

1−
∑r

i=1 m
2
i

.
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Proof Sketch



The Kac-Rice formula

Kac-Rice formula (Kac ’43, Rice ’44)

For Gaussian processes fN : RN → R,

E Crt(fN) =
∫
RN

E
[∣∣det(∇2fN(x))

∣∣ |∇fN(x) = 0
]
φx(0)dx,

whereφx(0) is the density of the Gaussian vector∇fN(x) at 0.
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The Kac-Rice formula

Here, we consider the random variable:

CrtN,∗(M, E) :=
∑

σ:grad fp(σ)=0

1{⟨σ, ui⟩ ∈ Mi, 1 ≤ i ≤ r}1{fp(σ) ∈ E}.

∗ The Kac-Rice formula gives

E CrtN,∗(M, E)

=

∫
{σ : ⟨σ,ui⟩∈Mi ∀i∈[r]}

E
[∣∣det(∇2fp(σ))

∣∣ · 1{fp(σ) ∈ E}|∇fp(σ) = 0
]
φσ(0)dσ

∗ The conditioned Hessian is distributed as a spiked randommatrix:

∇2fp(σ) ∼ HN =
r∑

i=1

γi(m)eieTi + WN,

whereWN ∼ GOE(N).
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Random determinants

Let HN =
∑r

i=1 γi(m)eieTi + WN and let µ̂HN = 1
N
∑N

i=1 δλi(HN) be the empirical spectral
measure of HN.

∗ Then:

E [| detHN|] = E

[ N∏
i=1

|λi|
]
= E

[
e
∑N

i=1 log |λi|
]
= E

[
eN

∫
R log |λ|µ̂HN (dλ)

]

∗ LDP result: the spectrum of the deformed GOE concentrates around the semi-circle law:

PγN (µ̂HN /∈ B(σsc, δ)) ≈ e−N2C(δ),

where σsc(dx) = 1
2π

√
4− x21x∈[−2,2]dx.

Therefore,
E[| detHN|] ≈ eN

∫
R |λ|σsc(dλ).

18



Random determinants

Let HN =
∑r

i=1 γi(m)eieTi + WN and let µ̂HN = 1
N
∑N

i=1 δλi(HN) be the empirical spectral
measure of HN.

∗ Then:

E [| detHN|] = E

[ N∏
i=1

|λi|
]
= E

[
e
∑N

i=1 log |λi|
]
= E

[
eN

∫
R log |λ|µ̂HN (dλ)

]

∗ LDP result: the spectrum of the deformed GOE concentrates around the semi-circle law:

PγN (µ̂HN /∈ B(σsc, δ)) ≈ e−N2C(δ),

where σsc(dx) = 1
2π

√
4− x21x∈[−2,2]dx.

Therefore,
E[| detHN|] ≈ eN

∫
R |λ|σsc(dλ).

18



Random determinants

Let HN =
∑r

i=1 γi(m)eieTi + WN and let µ̂HN = 1
N
∑N

i=1 δλi(HN) be the empirical spectral
measure of HN.

∗ Then:

E [| detHN|] = E

[ N∏
i=1

|λi|
]
= E

[
e
∑N

i=1 log |λi|
]
= E

[
eN

∫
R log |λ|µ̂HN (dλ)

]

∗ LDP result: the spectrum of the deformed GOE concentrates around the semi-circle law:

PγN (µ̂HN /∈ B(σsc, δ)) ≈ e−N2C(δ),

where σsc(dx) = 1
2π

√
4− x21x∈[−2,2]dx.

Therefore,
E[| detHN|] ≈ eN

∫
R |λ|σsc(dλ).

18



Summary

∗ We studied the loss function fp : SN−1 → R:

fp(σ) =
r∑

i=1

λi⟨ui,σ⟩+
1√
N

N∑
i1,...,ip=1

Ji1...ipσi1 · · ·σip

∗ We computed the annealed complexity

Σ = lim
N→∞

1
N
log E[Crt(fp)]

and we found that there is a threshold that separatesΣ > 0
fromΣ = 0.

∗ The proof relied on the Kac-Rice formula and on LDPs.
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Extra slide

The function S∗ : (−1, 1)r × R → R is defined by

S∗(m, x) := S(m, x) + Φ∗

(√
2p

p− 1
x

)
,

where

S(m, x) =
1
2
(log(p− 1) + 1) +

1
2
log

(
1−

r∑
i=1

m2
i

)
− p

r∑
i=1

λ2
i m

2p−2
i (1−m2

i )

+ 2p
∑
i<j

λiλjm
p
i m

p
j −

(
x−

r∑
i=1

λim
p
i

)2 (2)

and

Φ∗(x) =


x2
4 − 1

2 if |x| ≤ 2,
x2
4 − 1

2 − |x|
4

√
x2 − 4+ log

(√
x2
4 − 1+ |x|

2

)
if |x| > 2.

(3)
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