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Computable prices in model with transaction costs

We consider a portfolio process : (Vt)thfl where V_1 € Rej is the
initial endowment expressed in cash.

The solvency set G; : 2 — RY is F;-measurable random closed
set,i.e.

Graph(G;) = {(w,x) : x € G¢(w)} € Fr ® B(RY)
The cost process C = (C;)/_, associated to G is defined as :
Ci(z)=infla eR: ae;—z€ Gt} =minfa € R: ae1—2z € G}

C; is lower semicontinuous and is allowed to be non-convex.
Similarly, we may define the liquidation value process L = (L¢)[_, :

Li(z) :=sup{a € R:z—ae; € G}, z¢€ RY.
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Computable prices in model with transaction costs

A portfolio process is a stochastic process (Vt);r:_l satisfying :
AVi=V; — Vi 1€ —Gs,as., t=0,---,T.

or equivalently, L;(—AV;) >0 a.s.

Some examples :

C:(z) = z5¢, no transaction cost

Ci(z) = 21 + S72%1,000 + SP7°1,2¢, bid — ask
and the model with fixed cost (non-convex cost) :

Ct(Z) = Zl — (—2251_{) — Ct)+ 1Z2<0 + (Zzsta — Ct) ].22>0
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Computable prices in model with transaction costs

We denote by R+(&) the set of all portfolio processes starting at
time t < T that replicates ¢ at the terminal date T :

Re(€) = {(Ve),, —AV; € 1%(Gs, Fi), Vs > t + 1, Vr = ¢}
The set of replicating prices of £ at time t is
Pu€) = {Ve = (VL VE) - (V)L e Ru(9) .
The infimum replicating cost is then defined as :

ce(§) = essinfr, {Ce(Vi), Ve € Pe(§)}-

We are interested in ¢p(€)
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Computable prices in model with transaction costs

Definition (Conditional essential infimum)

Let H and F be complet g-algebras such that H C F and let

I = (vi)ier be a family of real-valued F-measurable random
variables. There exists a unique (up to a P-negligible set) random
variables v, € L°(R,H), denoted by ess infy, I, which satisfies the
following properties

1) Foreveryi€ l, vy <~ a.s.

2) If¢ € LO(R,H) satisfies ¢ < ~y; a.s. forall i € I, then ¢ < v
a.s.
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Computable prices in model with transaction costs

In classical approach, using dual characterization of ¢y(§) via
Consistent Price Systems.

Numerical algorithm is available only for finite probability space.
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Computable prices in model with transaction costs

Important observation : L+(—AV7) > 0 is equivalent to :

VE > e+ Cr((0,6®@ — v,

V3 | >ess SUpr,_, (fl + C7((0,6@ — V;zll))) , a.S.

We continue,

T
th > ess supg, <§1 + Z C,(0, Vs(z) — Vs(i)l ) )
s=t+1
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Computable prices in model with transaction costs
We set :
My (€om1.) = {620} x NIRRT Fo) < (€2

We define 7¢(V,_1) as :

T
V(Ve_1) = essinfr, ess sup, <§1 + Z Cs(0, v — Vs(2)1)>.
v@en](Vi—1,¢) s=t

Theorem (Dynamic Programming Principle)

Forany0<t<T—1andV; 1€ Lo(Rd,}"t_l), we have

¥(Ve_1) = essinfr, ess Supr, (Ct(O, Vt(2) - Vt(E)l) + ’yf+1(Vt)) .
VieLO(RY,F;)

In particular, 7%(0) = co(€).
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Computable prices in model with transaction costs

Usually, we have 75(V;_1) = 75(S¢, Ve_1). We consider a weak NA
condition :

Definition (Absence of Immediate Profit : AIP)

For any t < T — 1, the minimal cost to hedge zero payoff is
identical to 0 a.s. : ¢;(0) = 0.

Definition (Strong Absence of Immediate Profit : SAIP)

For any t < T — 1, the minimal cost to hedge zero payoff is
identical to 0 a.s. : ¢:(0) = 0 (AIP holds). Moreover, c¢;(0) is
attained only at the zero strategy.
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Computable prices in model with transaction costs

Theorem (w-wise formulation of DPP)
Under SAIP, the DPP is computable w-wise as :

7£(St, Veer) = inf (Ct(Sta(an(z)_Vt*(z)l))+ sup ’Y§+1(57Y)>
yeR s€e(St)

where ¢¢(St) = suppz,Se11. Also, the infimum hedging cost of §
at any time t is reached.

Main idea : maintain the lower semicontinuity of yf.
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Computable prices in model with transaction costs

Theorem (Reachability set)
Under SAIP, the DPP is computable w-wise as :

(S, Ve1) = inf C @ _ v
’Yt(sta t 1) yer(Igt,Vt1)< t(5t7(07y tfl))

+ sup 7§+1(57Y)>a
sEPt(St)

for some compact set-valued mapping K : RY x R — R¢.
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Bid-Ask spread

We consider Binomial model suppz, Se11 = {kf S, k¢St }, where
k¢, k! € R, and the cost function :

Ct(5t7 V) = Vl + StaV21V2ZO + 51?V21V2S0'
We want to hedge the payoff £ = ((K — S1)*,0) € R2.

We suppose that 5? = St(]. + 61_-),5? = St(]. — 61_-), €t € R+.
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Bid-Ask spread

AIPt_1 holds if and only if :

14+er_1 1—€e71_1
1—e7 1+€T.

Moreover, SAIP 1_1 holds if and only if the above inequalities are
strict. Moreover, suppose that 1+ e7_1 < (1 +e7)k%_; and
1—er_1>(1—er)ke |, AIP7_, holds if and only if :

1 _ 1—er_
+ET-2 and ki, = €T-2

k¢ , < ——1==2 S R
T2 1+er (1—er)kd |

Moreover, SAIP r_, holds if and only if the above inequalities are
strict
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Bid-Ask spread

We suppose T = 2, the proportional cost coefficients
€1 = € = 0.02. We assume that SAIP condition holds and choose
kg =09,k =1.1, kff =0.9, k' =1.2.
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Fixed cost

Consider the cost function :
Ct(Z) = Z1 — (—2255 — Ct)+ ].22<0 + (225{? — Ct) ].22>0

We suppose that the market defined by C; with ¢; = 0 satisfies
SAIP. We called this condition Robust SAIP or RSAIP.
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Fixed cost

We use the same parameters as Bid-Ask spread and we consider
fixed costs ¢; = ¢ = 0.8.

5

20

price Put

15

10

90 % 100 105 110 115
50

Figure — Price of put option with fixed costs.
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Thank you for your attention !

Duc-Thinh VU, Paris Dauphine University.
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