The signature transform 0000000

Averaging time series

Application: clustering time series 00000000

Barycentres de séries temporelles : une nouvelle approche basée sur la méthode de la signature Journées MAS (Modélisation Aléatoire et Statistique) 2022 de la Société de Mathématiques Appliquées et Industrielles

Raphaël Mignot

Institut Elie Cartan de Lorraine Université de Lorraine raphael.mignot@univ-lorraine.fr

August 29, 2022, Rouen

Joint work with M. Clausel, K. Usevich, G. Oppenheim, L. Coutin, A. Lejay

Raphael Mignot (Univ. de Lorraine)

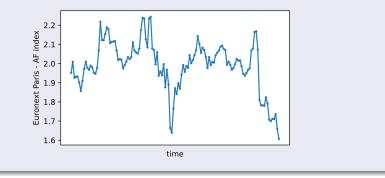
Defining signature barycenters

1/26

0	The signature transform	Averaging time series	Application: clustering time series	References

Background 0●00	The signature transform	Averaging time series	Application: clustering time series	References
Backgro	ound			

Time series

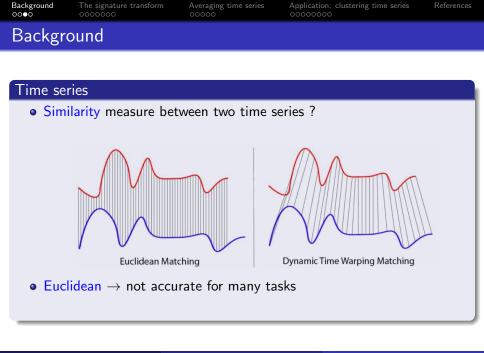


\rightarrow sequential data appears in many contexts!

Raphael Mignot (Univ. de Lorraine)

Defining signature barycenters

Background 00●0	The signature transform	Averaging time series	Application: clustering time series	References
Backgr	ound			
Time se	ries			
 Sim 	ilarity measure bet	ween two time s	eries ?	
	Euclidean Mate	thing	Dynamic Time Warping Matching	



Raphael Mignot (Univ. de Lorraine)

Background 00●0	The signature transform	Averaging time series	Application: clustering time series	References
Backgro	ound			
Time ser	ries			
 Simi 	ilarity measure bet	ween two time s	eries ?	
	Euclidean Mato	ching	Dynamic Time Warping Matching	
• Eucl	lidean ightarrow not accur	rate for many ta	sks	
Oyn	amic Time Warpin	g (DTW) $ ightarrow$ rel	evant, versatile	J

Background 000●	The signature transform	Averaging time series	Application: clustering time series	References
Backgro	ound			

• Many useful methods in statistical learning rely on averaging

Background 000●	The signature transform	Averaging time series	Application: clustering time series	Refere
Backgro	ound			

- Many useful methods in statistical learning rely on averaging
- **Problem:** how to extend those statistical learning procedure to the time series framework

Background 000●	The signature transform	Averaging time series	Application: clustering time series	References
Backgr	ound			

- Many useful methods in statistical learning rely on averaging
- **Problem:** how to extend those statistical learning procedure to the time series framework

 \rightarrow How to average a set of time series?

Background 000●	The signature transform	Averaging time series	Application: clustering time series	References
Backgro	ound			

- Many useful methods in statistical learning rely on averaging
- **Problem:** how to extend those statistical learning procedure to the time series framework

 \rightarrow How to average a set of time series?

What has been done?

- Pairwise averaging (with eg. euclidean distance)
- Averaging method using DTW¹
- Averaging methods on Lie groups

¹Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern recognition, 44(3), 678-693. [PKG11]

Background 0000	The signature transform ●000000	Averaging time series	Application: clustering time series	References

Background 0000	The signature transform 0●00000	Averaging time series	Application: clustering time series	References
The sig	nature transfo	rm		

Definition

• Input: a continuous path $X:[0,1]
ightarrow \mathbb{R}^d$

Background	The signature transform	Averaging time series	Application: clustering time series	
	000000			

Definition

- Input: a continuous path $X:[0,1] \to \mathbb{R}^d$
- Signature of order *m*:

$$S^{(m)}_{[0,1]}(X) \stackrel{\mathrm{def}}{=} \int_{0 < u_1 < \cdots < u_m < 1} dX_{u_1} \otimes \cdots \otimes dX_{u_m} \in (\mathbb{R}^d)^{\otimes m}$$

with \otimes the tensor product.

References

Background	

Averaging time series

Application: clustering time series 00000000

References

The signature transform

Definition

- Input: a continuous path $X:[0,1]
 ightarrow \mathbb{R}^d$
- Signature of order *m*:

$$S_{[0,1]}^{(m)}(X) \stackrel{\text{def}}{=} \int_{0 < u_1 < \cdots < u_m < 1} dX_{u_1} \otimes \cdots \otimes dX_{u_m} \in (\mathbb{R}^d)^{\otimes m}$$

with \otimes the tensor product.

• Signature of X is the infinite collection of signatures of all orders:

$${f S}_{[0,1]}(X)=(1,S^{(1)}_{[0,1]}(X),S^{(2)}_{[0,1]}(X),S^{(3)}_{[0,1]}(X),\dots)$$

Raphael Mignot (Univ. de Lorraine)

Chevyrev, I., & Kormilitzin, A. (2016). A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788. [CK16]

The signature transform 000000

Averaging time series

Application: clustering time series

References

The signature transform

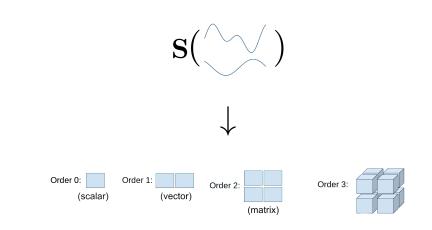
The signature transform

Averaging time series

Application: clustering time series

References

The signature transform



• Time series: $X \in \mathbb{R}^{2 \times 100}$

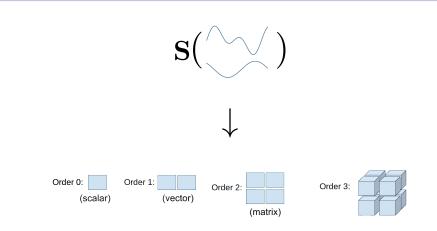
The signature transform 0000000

Averaging time series

Application: clustering time series

References

The signature transform



- Time series: $X \in \mathbb{R}^{2 \times 100}$
- Signature: $S^{(0)} \in \mathbb{R}^0$, $S^{(1)} \in \mathbb{R}^2$, $S^{(2)} \in \mathbb{R}^{2 \times 2}$, $S^{(3)} \in \mathbb{R}^{2 \times 2 \times 2}$, etc.

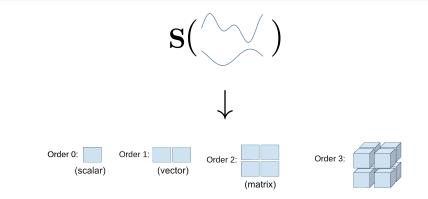
The signature transform 0000000

Averaging time series

Application: clustering time series

References

The signature transform



• Time series: $X \in \mathbb{R}^{2 \times 100}$ • Signature: $S^{(0)} \in \mathbb{R}^0$, $S^{(1)} \in \mathbb{R}^2$, $S^{(2)} \in \mathbb{R}^{2 \times 2}$, $S^{(3)} \in \mathbb{R}^{2 \times 2 \times 2}$, etc. $\mathbf{S}_{[0,1]}(X) = (1, S^{(1)}_{[0,1]}(X), S^{(2)}_{[0,1]}(X), S^{(3)}_{[0,1]}(X), \dots)$

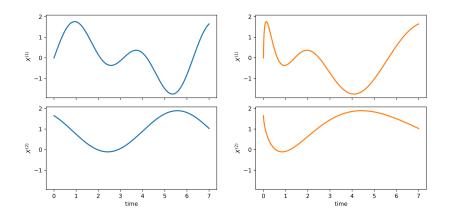
Backgroun	

Averaging time series

Application: clustering time series

References

The signature transform



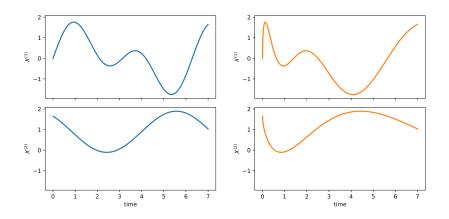
Backgroun	

Averaging time series

Application: clustering time series

References

The signature transform



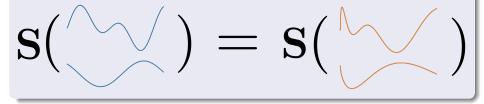
 \rightarrow Same paths, but different time parametrizations!

Background 0000	The signature transform 0000●00	Averaging time series	Application: clustering time series	Referer

Fundamental property #1 of the signature transform

• Intrinsic characterization of the path, ignoring translation and time reparametrization: let φ be a reparametrisation

$$\mathbf{S}_{[a,b]}(X_{\varphi(.)}) = \mathbf{S}_{[\varphi(a),\varphi(b)]}(X)$$



The signature transform 0000000

Averaging time series

Application: clustering time series

The signature transform

Fundamental property #2 of the signature transform

The space of signatures is a non compact Lie group under ⊗ operation¹.

 $^{^{1}\}otimes$ is an abuse of notation: it should be denoted \boxtimes as it is different from the classical tensor product \otimes .

ackground	The signature transform	Averag
	0000000	

Application: clustering time series 00000000

The signature transform

Fundamental property #2 of the signature transform

The space of signatures is a non compact Lie group under ⊗ operation¹.

ing time series

 This ⊗ operation is related to the concatenation of two paths through the so-called Chen relation: let 0 ≤ u ≤ 1

$$\mathsf{S}_{[0,1]}(X\star Y)=\mathsf{S}_{[0,u]}(X)\otimes\mathsf{S}_{[u,1]}(Y)$$

 $\mathbf{S}(\mathcal{N}) = \mathbf{S}(\mathcal{N}) \otimes \mathbf{S}(\mathcal{N})$

 $^{^{1}}$ \otimes is an abuse of notation: it should be denoted \boxtimes as it is different from the classical tensor product \otimes .

Background	

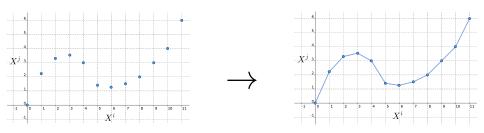
The signature transform 000000●

Averaging time series

Application: clustering time series

References

The signature transform

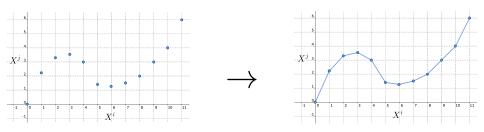


\rightarrow linear interpolation

Background	The signature transform	Averaging time series	Ap
0000	0000000		00

Application: clustering time series

The signature transform



 \rightarrow linear interpolation

 \rightarrow why? easy to compute because of Chen relation

Background 0000	The signature transform	Averaging time series ●0000	Application: clustering time series	References

Averaging time series

Background 0000	The signature transform	Averaging time series 0●000	Application: clustering time series	References
Motivat	ion			

Why averaging using the signature?

• Invariance to time reparametrization (Fundamental prop. #1)

Background 0000	The signature transform 0000000	Averaging time series 0●000	Application: clustering time series	References
N / . ·	2 · · ·			

Why averaging using the signature?

- Invariance to time reparametrization (Fundamental prop. #1)
- Suitable for multi-dimensional structure

Background 0000	The signature transform	Averaging time series 0●000	Application: clustering time series	References

Why averaging using the signature?

- Invariance to time reparametrization (Fundamental prop. #1)
- Suitable for multi-dimensional structure
- deal with time series of different lengths
- deal with missing values

Background 0000	The signature transform	Averaging time series 0●000	Application: clustering time series	References

Why averaging using the signature?

- Invariance to time reparametrization (Fundamental prop. #1)
- Suitable for multi-dimensional structure
- deal with time series of different lengths
- deal with missing values

 \rightarrow three averaging approaches designed

Background 0000	The signature transform	Averaging time series 0●000	Application: clustering time series	References
Motivat	tion			

Why averaging using the signature?

- Invariance to time reparametrization (Fundamental prop. #1)
- Suitable for multi-dimensional structure
- deal with time series of different lengths
- deal with missing values

 \rightarrow three averaging approaches designed

 \rightarrow all three are based on Fundamental prop. #2: signature \in Lie group

Background 0000	The signature transform	Averaging time series 00●00	Application: clustering time series	References	
Averaging the signature					
Approach 1: the Log Euclidean barycenter					

Let x_1, \ldots, x_n be *n* multidimensional time series Let X_1, \ldots, X_n be their linear interpolations Denote $\mathbb{X}_i = \mathbf{S}_{[0,1]}(X_i)$.

Background 0000	The signature transform	Averaging time series	Application: clustering time series	References		
Ŭ	Averaging the signature Approach 1: the Log Euclidean barycenter					

Let x_1, \ldots, x_n be *n* multidimensional time series Let X_1, \ldots, X_n be their linear interpolations Denote $\mathbb{X}_i = \mathbf{S}_{[0,1]}(X_i)$.

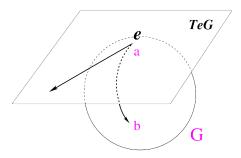


Figure: Lie Group G and its Lie algebra T_eG .

Let x_1, \ldots, x_n be *n* multidimensional time series Let X_1, \ldots, X_n be their linear interpolations Denote $\mathbb{X}_i = \mathbf{S}_{[0,1]}(X_i)$.

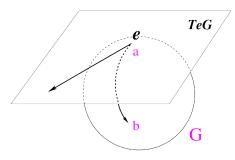
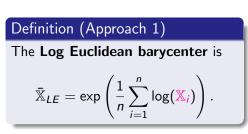


Figure: Lie Group G and its Lie algebra T_eG .



Background 0000	The signature transform	Averaging time series	Application: clustering time series	References		
Averaging the signature						

Approach 2: the group exponential barycenter

Background 0000	The signature transform 0000000	Averaging time series 000●0	Application: clustering time series	Re

Averaging the signature Approach 2: the group exponential barycenter

Definition (Approach 2)

The group exponential barycenter is defined iteratively as following:

• Step 0: initialize $\overline{\mathbb{X}}_{(0)}$.

Background 0000	The signature transform	Averaging time series 000●0	Application: clustering time series	Reference

Averaging the signature Approach 2: the group exponential barycenter

Definition (Approach 2)

The group exponential barycenter is defined iteratively as following:

- Step 0: initialize $\overline{\mathbb{X}}_{(0)}$.
- Step k:

$$\bar{\mathbb{X}}_{(k+1)} = \bar{\mathbb{X}}_{(k)} \otimes \exp\left(\frac{1}{n} \sum_{i=1}^{n} \log(\bar{\mathbb{X}}_{(k)}^{-1} \otimes \underline{\mathbb{X}}_{i})\right).$$

Background The signature transform Averaging time series 00000

Application: clustering time series

Averaging the signature Approach 2: the group exponential barycenter

Definition (Approach 2)

The group exponential barycenter is defined iteratively as following:

- Step 0: initialize $\overline{\mathbb{X}}_{(0)}$.
- Step k:

$$\bar{\mathbb{X}}_{(k+1)} = \bar{\mathbb{X}}_{(k)} \otimes \exp\left(\frac{1}{n} \sum_{i=1}^{n} \log(\bar{\mathbb{X}}_{(k)}^{-1} \otimes \underline{\mathbb{X}}_{i})\right).$$

 \rightarrow Good news: under mild conditions, this algorithm converges!

Background The signature transform Averaging time series

Application: clustering time series

Averaging the signature

Approach 2: the group exponential barycenter

Definition (Approach 2)

The group exponential barycenter is defined iteratively as following:

- Step 0: initialize $\bar{\mathbb{X}}_{(0)}$.
- Step k:

$$\bar{\mathbb{X}}_{(k+1)} = \bar{\mathbb{X}}_{(k)} \otimes \exp\left(\frac{1}{n} \sum_{i=1}^{n} \log(\bar{\mathbb{X}}_{(k)}^{-1} \otimes \bar{\mathbb{X}}_{i})\right)$$

 \rightarrow Good news: under mild conditions, this algorithm converges!

Raphael Mignot (Univ. de Lorraine)

Pennec & Arsigny (2013). Exponential barycenters of the canonical Cartan connection and invariant means on Lie groups. [PA13, Algorithm 1 & Corollary 5]

Background 0000	The signature transform	Averaging time series 0000●	Application: clustering time series	References
Averaging the signature				
Approach	3: optimization on pat	th space		

\rightarrow reconstruction of X given **S**(X): not easy!

\rightarrow reconstruction of X given **S**(X): not easy!

 x_1, \ldots, x_n be *D*-dimensional. X_1, \ldots, X_n their linear interpolations.

 Background
 The signature transform
 Averaging time series
 Application: clustering time series
 References

 Averaging the signature

 Approach 3: optimization on path space

\rightarrow reconstruction of X given **S**(X): not easy!

 x_1, \ldots, x_n be *D*-dimensional. X_1, \ldots, X_n their linear interpolations.

Definition (Approach 3)

The barycenter is the path $\bar{X} \in \mathbb{R}^{D imes L}$ such that

$$ar{X} = \operatorname*{arg\,min}_X \sum_{i=1}^n d(\mathbf{S}(X), \mathbf{S}(X_i))$$

 Background
 The signature transform
 Averaging time series
 Application: clustering time series
 References

 Averaging the signature

 Approach 3: optimization on path space

 \rightarrow reconstruction of X given **S**(X): not easy!

 x_1, \ldots, x_n be *D*-dimensional. X_1, \ldots, X_n their linear interpolations.

Definition (Approach 3)

The barycenter is the path $\bar{X} \in \mathbb{R}^{D imes L}$ such that

$$ar{X} = rgmin_X \sum_{i=1}^n d(\mathbf{S}(X), \mathbf{S}(X_i))$$

- Distance d: euclidean, signature distance.
- Optimization: gradient descent.

Background 0000	The signature transform	Averaging time series	Application: clustering time series •0000000	References

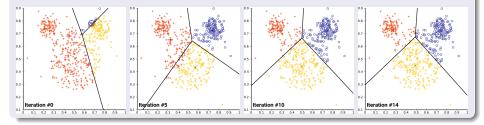
Application: clustering time series

Background 0000	The signature transform	Averaging time series	Application: clustering time series 0000000	References
Applica	tion			

K-means clustering

• **Goal:** cluster *n* observations $(x_i)_{i=1,...,n}$ into *K* groups.

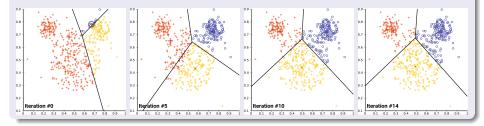
Background 0000	The signature transform	Averaging time series	Application: clustering time series	References
Applica	tion			
K-mean	s clustering			
• Goa	al: cluster <i>n</i> observ	vations $(x_i)_{i=1,,i}$	n into K groups.	



Background 0000	The signature transform	Averaging time series	Application: clustering time series 0000000	References
Applica	tion			

K-means clustering

- **Goal:** cluster *n* observations $(x_i)_{i=1,...,n}$ into *K* groups.
- Two parameters to choose:
 - similarity measure
 - averaging method

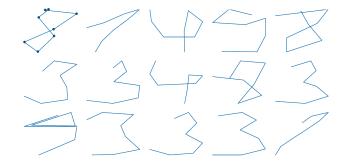


Background 0000	The signature transform	Averaging time series	Application: clustering time series	References
Applica	tion			

Framework

- Dataset: PenDigits¹
- 11000 bidimensional time series of length 8.

data.shape = (11000, 8, 2)



 1 Bagnall et al. 2018. The UEA multivariate time series classification archive.

Defining signature barycenters

Backgrour	ıd

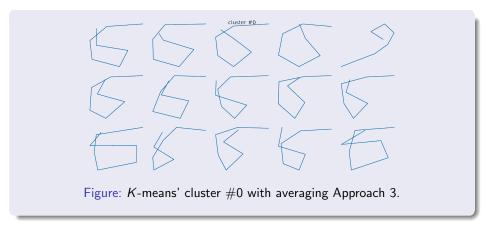
The signature transform 0000000

Averaging time series

Application: clustering time series

References

Application



Backgr	ound

Application: clustering time series 00000000

Application: results

Table: K-means parameters used for benchmark. Pink indicates the use of the signature transform.

Averaging method	Similarity measure
Euclidean barycenter	euclidean
DTW Barycenter Averaging ¹	DTW
Approach 1: log-euclidean	euclidean
Approach 2: group exponential barycenter	euclidean
Approach 3: path space optimization	euclidean

¹Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern recognition, 44(3), 678-693. [PKG11]

Background 0000 The signature transform 0000000

Averaging time series

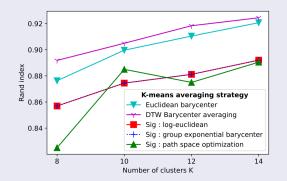
Application: clustering time series 00000000

References

Application: results

Averaging method	Similarity measure
Euclidean barycenter	euclidean
DTW Barycenter Averaging	DTW
Approach 1: log-euclidean	euclidean
Approach 2: group exponential barycenter	euclidean
Approach 3: path space optimization	euclidean

Rand Index



Raphael Mignot (Univ. de Lorraine)

Background	

Application: clustering time series 00000000

Conclusion and next steps

Regarding the clustering of PenDigits

Performances are not state-of-the-art.

• Combine the signature with other clustering algorithms: e.g. Hierarchical clustering, DBSCAN.

Application: clustering time series

Conclusion and next steps

Regarding the clustering of PenDigits

Performances are not state-of-the-art.

- Combine the signature with other clustering algorithms: e.g. Hierarchical clustering, DBSCAN.
- Use different datasets with various shapes: high-dimensional, long time series (reverse engineering).

Application: clustering time series

Conclusion and next steps

Regarding the clustering of PenDigits

Performances are not state-of-the-art.

- Combine the signature with other clustering algorithms: e.g. Hierarchical clustering, DBSCAN.
- Use different datasets with various shapes: high-dimensional, long time series (reverse engineering).
- Try other similarity measures, more appropriate for the signature.

Application: clustering time series

Conclusion and next steps

Regarding the clustering of PenDigits

Performances are not state-of-the-art.

- Combine the signature with other clustering algorithms: e.g. Hierarchical clustering, DBSCAN.
- Use different datasets with various shapes: high-dimensional, long time series (reverse engineering).
- Try other similarity measures, more appropriate for the signature.

Regarding the averaging approaches

- Extend other methods to the time series framework.
- How to represent a barycenter?

Background	The signature transform	Averaging time series	Application: clustering time series	Re
			0000000	

Thank you!

Background 0000	The signature transform	Averaging time series	Application: clustering time series	References				
Bibliography								

- [CK16] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv:1603.03788 [cs, stat], Mar 2016. arXiv: 1603.03788.
- [PA13] Xavier Pennec and Vincent Arsigny. Exponential Barycenters of the Canonical Cartan Connection and Invariant Means on Lie Groups, page 123–166. Springer Berlin Heidelberg, 2013.
- [PKG11] François Petitjean, Alain Ketterlin, and Pierre Gançarski. A global averaging method for dynamic time warping, with applications to clustering. *Pattern Recognition*, 44(3):678–693, Mar 2011.