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1. Introduction




Sampling from a density

Problem: Given a probability density function 7 : R? — R,
generate a random vector X such that

X ~m,

thatis P(X € A) = [, n(

Dalalyan, A.S.



Warm-up: rejection sampling 1/2

@ Let v : RP — R be an auxiliary, easily samplable, density.

@ Assume for a known M > 0, we have n(x) < Mv(x), V.

Rejection method

Step 1 sample independently Y ~ v and U ~ Unif([0, M])
Step2 ifU <n(Y)/v(Y),thenset X =Y,
else reject Y and return to Step 1.
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Warm-up: rejection sampling 1/2

@ Let v : RP — R be an auxiliary, easily samplable, density.

@ Assume for a known M > 0, we have n(x) < Mv(x), V.

Rejection method

Step 1 sample independently Y ~ v and U ~ Unif([0, M])
Step2 ifU <n(Y)/v(Y),thenset X =Y,
else reject Y and return to Step 1.

@ Let K be the number of rounds required to sample X.
e the random variable K ~ Geom(p)
o withp=PU <#7(Y)/v(Y)) =1/M
e the average number of rounds: E[K] =1/p = M.
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Warm-up: rejection sampling 2/2
Uniform distribution on a compact set

Drawback of rejection sampling: in most cases M grows
exponentially fast in dimension p.

@ Consider the particular case 7(x) « 1(x € C) with C C [0, 1]?
compact.

@ We do not know the volume V- of the set C but we know that C'
contains a ball of radius r > 0.

@ We naturally choose v(x) = 1(x € [0, 1]?).
@ Then the almost only possible choice for M is M = 1/Vol(BP).

Dalalyan, A.S.



Warm-up: rejection sampling 2/2
Uniform distribution on a compact set

Drawback of rejection sampling: in most cases M grows
exponentially fast in dimension p.

@ Consider the particular case 7(x) «x 1(x € C) with C C [0, 1]?
compact.

@ We do not know the volume V- of the set C but we know that C'
contains a ball of radius » > 0.

@ We naturally choose v(x) = 1(x € [0, 1]?).
@ Then the almost only possible choice for M is M = 1/Vol(B?).

Most Markov Chain Monte Carlo algorithms suffer from the same
drawback.
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Precise setting
Sampling from a log-concave density
We define the (log-posterior) function

[f(Q) = —log7(0). ]

and assume that it satisfies the smoothness and the strong convexity
assumptions: there exist m > 0 and M < oo such that

7(6)~ £(8) ~VF(8) (6 -0) > T[6—8]3,  (CL)
IV£(0) = V(O)]l2 < M6 —0]2,  (C2)
forall 8,0 ¢ R?.

Goal: find nonasymptotic guarantees for approximately sampling from
. More precisely, for every ¢ > 0 find a density x such that one can
efficiently sample from 1 and

Hu — 7THTV <e| or | Walp,n) <e.
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Optimization versus integration
Guarantees for sampling |

IMA Journal of Numerical Analysis (2013) 33, 80-110
Advance Access publication on March 19, 2012

Nonasymptotic mixing of the MALA algorithm

N. BOU-RABEE* AND M. HAIRER

Theorem

Under natural assumptions on the target distribution 7(x) o e~/
for h small enough and for € R? satisfying f(x) < Ey, there exist
positive constants p € (0, 1), C1(Ep) and C5 independent of h such that
the bound

_ /
IP*(x, ) — 7llrv < C1(Bo)(p* + e~ /"""

holds for all k. Here P* is the transition probability of a k-step MCMC.
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Optimization versus integration
Guarantees for sampling |

IMA Journal of Numerical Analysis (2013) 33, 80-110
Advance Access publication on March 19, 2012

Nonasymptotic mixing of the MALA algorithm

N. BOU-RABEE* AND M. HAIRER

Theorem

Under natural assumptions on the target distribution w(x) o
e=7@®) for h small enough and for z € RP satisfying f(z) <
Ey, there exist positive constants p € (0,1), C,(Ey) and C> inde-
pendent of A such that the bound

_ /
IP*(x,-) — 7llrv < C1(Bo)(p* + e~ /M)

holds for all k. Here P* is the transition probability of a k-step MCMC.
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Optimization versus integration
Guarantees for sampling |

IMA Journal of Numerical Analysis (2013) 33, 80-110
Advance Access publication on March 19, 2012

Nonasymptotic mixing of the MALA algorithm

N. BOU-RABEE* AND M. HAIRER

Theorem

Under natural assumptions on the target distribution 7(z) o e=/(®)
for h small enough and for x € R? satisfying f(x) < Ey, there exist
positive constants p € (0,1), C1(Ep) and C, independent of i such
that the bound

_ /
IP*(x, ) — 7llrv < C1(Bo)(p* + e~ /"""

holds for all k. Here P* is the transition probability of a k-step MCMC.
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Assumption 2.1. The potential energy U € CHR™, R) satisfies the following.
A) One has U(x) = 1 and, for any C' > 0 there exists an E > 0 such that
Ulz) > C(1+ [z]*),
JorallU(xz) > E.
B) There exist constants ¢ € (0, 3), d > 0 and E > 0 such that
AU(z) < | VU () - dUz). 24)
Jor all x € R" satisfying U(x) > E.

C) The Hessian of U is bounded from below in the sense that there exists C' > ()
such that
D*U(x)(m,m) > ~Clnf*.

uniformly for all z,n € R™

D) There exists a constant C' > 0 such that the first four derivatives of
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Optimization versus integration
Guarantees for sampling I

Fast Algorithms for Logconcave Functions:
Sampling, Rounding, Integration and Optimization

Laszlo Lovisz Santosh Vempala *
Microsoft Research Georgia Tech and MIT

Corollary 1.2 Let f be a logconcave function in R",
given in the sense of (LS1), (LS2) and (LS3). Then for

m > 103 ——1n” -,
r? erdf’

nR? . nR?

the total variation distance of o™ and 7y is less than ¢.

Our notation: & > 1031p*(M/m)? log® (p/¢) implies that

P*(, ) — wllry < e.
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2. Sampling using the Langevin diffusion




Langevin based algorithms

To sample from 7 o< e~/, one can consider two versions of the
Langevin Monte Carlo (LMC) algorithm.

LMC (aka ULA) Start from 9'*) € R? and use the update rule

SEHD = 9 _ pvf(9®)) 4 V2R -,

where h > 0 is the step-size, and ¢, ... ¢®) . are
iid standard Gaussian and mdependent of 19(())

MALA (Metropolis adjusted Langevin algorithm) Start from
9 ¢ R? and use the update rule

y* D) = 9% _ v r@™) + van gk,
S+D _ yk+h), with prob. ay,
B(k), with prob. 1 — o,

for a properly chosen acceptance rate
o = a(a(k)7y(k+1)).
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Background on the Langevin algorithm
Langevin diffusion

9™ is the Euler discretisation of the Langevin diffusion L,

the Langevin diffusion is defined by the SDE

dL, = =V f(Ly)dt + V2 dW,, t> o.}

Under (C1-C2), the SDE has a unique strong solution which is a
Markov process. It is ergodic with stationary density = oc e~ 7.

The transition kernel of this process is denoted by P/ (z, - ), that
is PE(%,A) = P(Lt S A‘LO = .’B)

(C1-C2) yield the spectral gap property of the semigroup
{P} : t € R} }. For any probability density v,

1
|vPf — ||y < 5DKL(V||7T)1/2€*“”/2, V¢ > 0.
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lllustration of the link between Langevin diffusion and sampling

Space

Time

Figure: lllustration of Langevin dynamics. The blue lines represent
different paths of a Langevin process. We see that the histogram of the
state at time ¢ = 30 is close to the target density (the dark blue line).
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Background on the Langevin algorithm
Euler discretization

@ the Langevin diffusion is defined by the SDE

dLy = -V f(L;)dt +V2dW,;,  t>0. ]

@ 9% is the Euler discretisation of the Langevin diffusion L,:
ﬁ(k) ~ Lkh-

@ To be more precise, we introduce a diffusion-type continuous-time
process D obeying the following SDE:

dD; = b, (D) dt + V2 dW,,  t>0,

with the drift b, (D) = —V f(Dyy,) if ¢t € [kh, (k + 1)hA[.
@ For this process, we have

0D, ... 9% Z (Dh,...,th).}
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Optimization versus sampling

Optimization Sampling
@ Problem: compute @ Problem: Sample 9 from the pdf
0" € a%geﬁlin f(B)} ‘ 7(0) = %e—f(O)’ C=[pe!
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Optimization versus sampling

Optimization Sampling
@ Problem: compute @ Problem: Sample 9 from the pdf
‘ 0" € azgeﬁlin 1(6). J ‘ w(0) = %e—f(f?), C = pr e~ f
@ Method: gradient descent @ Method: Langevin Monte Carlo
‘ 6"l = 0¥ — hv f(8Y). ’ [19’”1 =9F —th(ﬂ’“)Jr@gk.]

with ¢* iid A/(0, 1).
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Optimization versus sampling

Optimization Sampling
@ Problem: compute @ Problem: Sample 9 from the pdf
‘ 0" € a%geﬁlin f(B)} ‘ w(0) = %e—f(f?), C = fRP e~ f
@ Method: gradient descent @ Method: Langevin Monte Carlo
‘ 6"l = 0¥ — hv f(8Y). ’ [19’”1 =9F —th(ﬂ’“)Jr@gk.]

with ¢* iid A/(0, 1).

What about theoretical guarantees? )

Dalalyan, A.S. 16



Optimization versus sampling
Theoretical guarantees

@ We assume that for some m, M > 0
f(0) — f(8") =V f(O) (0-6)=(m/2)]6 065,
IVF(0) =V [(0)]2 < M[6 -0,

@ Theorem 0 (optim.): If h < 2/(m + M), then

165 — 0l < (1 = m)<6° — 6]l

Dalalyan, A.S.
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Optimization versus sampling
Theoretical guarantees

@ We assume that for some m, M > 0
f(0)—f(0)-VFO) (6 —6")>(m))|0 6|3,
(6) — f(0) / (6°) " ( )/ (m/2)]] 12 V6.9 € R,
IVf(0) = Vf(0)]2 < M6 — 6],

@ Theorem 0 (optim.): If h < 2/(m + M), then

N

@ Theorem 1(sampling): If 1 <2/(m + M),

(WQ(VK,W) < (1 —mh)5Wa(vo, m) + 2L (hp)1/2. ]

(Durmus and Moulines, 2019; Dalalyan, 2017b)

Dalalyan, A.S. 17



HS
-

T T T T
oh .. kh (k+1)h 0 h 2h .. kh (ktl)h

t
L, :LO—/ Vf(Ls)ds +V2W,
0

Dalalyan, A.S.



HS
-

T T T T
oh .. kh (k+1)h 0 h 2h .. kh (ktl)h

t
L, :LO—/ Vf(Ls)ds +V2W,
0

Dalalyan, A.S.



000 002 004 008 008 040
L L L L L L

Lr 'Lkh

kh

(k+1)h

t
Lt — Lkh = — Vf(LS) ds + \/i(Wt — th)
kh

D, — Dy, = —(t — kh)\Vf(Dyp) + V2 (W, — Wyy,)
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Sketch of the proof/2

@ This readily yields
Lis1yn — Des1yn = L — Dy, — h(V f(Lin) — V (D))

0

Moreover, I — hV f is a contraction.
@ We then check that with p = 1 — mh,

L1y — Derrynlles < 0| Lin — Dinl iz, + 2M (h3p)*/2.

@ Using this inequality repeatedly for k + 1, k, ..., 1, we get
1L (kt1yn = Diksrnliz
< " | Lo — Doz, + 2M (B*p)/*(1+ 0+ ... 0%)
< I Wa(wo, m) +2M (h%p)*(1 - o)

Dalalyan, A.S.
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Improved result with variable step-size

Theorem 2 (Dalalyan and Karagulyan, 2017)
Consider the LMC with varying step-size hy, defined by

2
M +m+ (2/3)ym(k — K1)+’

hk+1: k:1,2,

where K; > 0 is the smallest integer satisfying

In (Wa(vo, m)//F) + In(m/M) + (2) In(M + m)

>
K12 In(1 + 2m/M—m)

For every positive integer k£ > K3, we have

3.5M./p
W) S e =R

Dalalyan, A.S.
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Remarks

@ Theorem 3 implies that O(r/= log /=*) gradient evaluations are
enough for getting precision < e.

@® Theorem 2 implies that O(»/s*) gradient evaluations are enough
for getting precision < e.

® Similar result holds true for

e the TV-distance (Dalalyan, 2017a), (Durmus and Moulines,
2017),

e the KL-divergence (Cheng and Bartlett, 2017),

e compact support = (Bubeck et al., 2018), (Brosse et al.,
2017).

@ Further smoothness: if f is Hessian-Lipschitz, then
O(r/<logr/?) gradient evaluations are enough for getting
precision < ¢ by the LMC. (Durmus and Moulines, 2019)

@ (Dwivedi et al., 2018; Chen et al., 2020) proved that for MALA,
O*(p) gradient evaluations are enough for getting precision < e.

Dalalyan, A.S. 22



Langevin as gradient flow in the space of measures
(Durmus et al., 2019)

The distribution v; of the Langevin difusion L; is the solution of
f/t = —Vﬁ(ut), t Z 0,

where
F(v) = f(@)v(0)do + / v(0) logv(0)do.
RP RpP

and the time-derivative of the mapping ¢ — v; should be
understood in the sense of the Wasserstein-2 distance.

Theorem 1 bis (sampling, improved): If h < 1/M,

Wa (v, ) < (1 — mh)52Wy(vy, ) + (2Mhp/m)*/2.

The difference with Theorem 1 is that the condition number
(M/m) > 1 is now within the square root.

Dalalyan, A.S. 23



The case of noisy gradient
The setting

@ The computation of V f might be costly or even impossible.
@ But one might have access to a noisy version of it:
Y* =V + ¢,
where {¢*)} satisfy

o (bounded bias) E[|[E(¢*[9")[3] < 6%p,

o (bounded variance) E[[|¢* — E(¢[9%)|3] < o2

e (ind. of updates) £**%) is independent of (¢°, ..., ¢").
@ The noisy LMC (nLMC) algorithm is then

L) _ (ki) _ pyr(bh) | fop g(b+),

Dalalyan, A.S. 24



The case of noisy gradient
Error estimate

@ One has access to a noisy version of the gradient:
YE=vi0h) + ¢,
where {¢®)1 satisfy
o E[|[E(¢[9");] < 8%p and E[||¢F — E(CM9M)3] < o?p,
e (ind. of updates) £€**V is independent of (¢°, ..., ¢").
@ The noisy LMC (nLMC) algorithm is then
ﬁ(k‘FLh) — ,'9 k h) hY k h) + \/7£(k+1)
Theorem 3

Let 95" be the K-th iterate of the nLMC and v be its distribution. If
h < 2/mM+m then we have

)
Wa(vi, ) < (1 —mh) XKWy (v, 7) + %(hp)l/2 I % + o (hp/m)/2.

Dalalyan, A.S.
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Guarantees under additional smoothness

CONDITION F: f € C? and for some m, M, M, > 0,
@ (strong convexity) V2 f(6) = ml,, for every 6 € R?,

@ (bounded second derivative) V2 f(6) < M1, for every 0 € R?,
@ (further smoothness) | V2f(0) — V2£(6')|| < M0 — 6’| 5.

Theorem 4

Let 9k p, be the K-th iterate of the LMC and v be its distribution. Then,
for every h < 2/(m+m)

Mshp  11Mh/Mp
+ , (1)
2m 5m
11.5Msh(p + 1)

Wa(VEMCO 1) < (1 — 0.25mh)* Wy (v, ) + — 0

Wo(vg,m) < (1 — mh)KWQ(VO,ﬂ_) +

Dalalyan, A.S.



3. Sampling using the kinetic Langevin diffusion




Kinetic Langevin diffusion

@ Under the same assumptions on the log-target f, one can
consider the kinetic Langevin diffusion

Vil |[—(yVi+uVf(L)
d[Lj_[ t Vv, t }dt—&—\/Z'yu[

where v > 0 is the friction coeff. and u > 0 is the inverse mass.

} AWy, (3)

PXP

@ The Langevin diffusion is obtained as a limit of L., where L is
defined as in (3) with w = 1, when ~ tends to infinity.

@ The continuous-time Markov process (L;, V';) is positive
recurrent. The corresponding invariant density is given by

) 1
p-(0.v) cexp{ — f(O) = -[lvl3}.  OeR veR. (4)

@ So under the invariant distribution, L and V' are independent,
L~mand V ~N(0,u).

Dalalyan, A.S.
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Kinetic Langevin diffusion

@ One can discretize this process to sample from p,. (hence from 7).

@ The quality of the resulting sampler will depend on two key
properties of the process: rate of mixing and smoothness of
sample paths.

@ (Cheng et al., 2018) establishes that for (v, u) = (2,1/M), the
mixing rate in the Wasserstein distance is e~ ("/2M)t

@ On the other hand, sample paths of {L} are smooth of order
~ 3/2 since

t
Lt:LO—&—/ Vsds.
0

@ Combining these two properties, (Cheng et al., 2018) prove that a
suitable discretization of (3) leads to a sampler that achieves an
error < ¢ after K iterations with K = O*((p/£?)'/?).
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Main questions answered in our work

Q1. What is the rate of mixing of the continuous-time kinetic Langevin
diffusion for general values of the parameters « and v?

Q2. Is it possible to improve the rate of convergence of the KLMC by
optimizing it over the choice of u, v and the step-size ?

Q3. If the function f happens to have a Lipschitz-continuous Hessian,
is it possible to devise a discretization that takes advantage of this
additional smoothness and leads to improved rates of

convergence?
| gradient-Lipschitz | Hessian-Lipschitz
LMC p/e? p/e
KLMC \/p/e? 2?7

ENSAE

Dalalyan, A.S.
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Mixing rate for any (v, u)

@ A first observation is that, without loss of generality, we can focus
our attention to the case u = 1.

Lemma The modified process (V¢, L) = (u='/2V,, i, Ly, s) is
an kinetic Langevin diffusion with parameters ¥ = +/+/u and
u=1.

@ Theorem 1 For every v,t > 0, there exists
B> {mA (y* — M)} /v such that

Wo(uPE, W' PE) < (V2/v)e P Wa(p, 1) (5)

@ Slightly better g is

| IM,m+M] | [m+M3m+M[ | [3m+ M, +oo]
v -M v M—m v =% —4m
Y 2 22(m+ M) — 2 2
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The KLMC algorithm
® Set ¢ (t) = e 7" and Y1 (t) = [y vi(s) ds.

@ The discretization is defined by the recursion:

Yo(h)vr, — Y1 (h)V f () Ert
Oy, + 1 (h)vy, — ’l/fz(h)vf(ﬁk)] v l ] - ©

Vk+1

!
Frt1 Err1

where (ékﬂ, £)..1) is a centered Gaussian satisfying s.t.
° (&;,§;)sareiid,
e for any j, the vectors ((£;)1,(€))1), ((€;)2, (€))2), -- -
((€;)p, (&))p) are iid with the covariance matrix

h
C- / o (t) 1 (8)] T [o (t) w1 (1)) dt.
0

@ This recursion is obtained by replacing V f(L;) by V f(Lx), on
t € [kh, (k + 1)h], by renaming (V iy, Lyy) into (vg,9;) and by
explicitly solving the obtained linear SDE.

@ This algorithm, that we will refer to as KLMC, has been first
‘analyzed by Cheng et al. (2018).

Dalalyan, A.S.
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Guarantees for the KLMC algorithm

Theorem 5 (Dalalyan and Riou-Durand, 2020)
For every v > vm + M and h < m/(4yM), the distribution v, of
the kth iterate 9, of the KLMC algorithm (6) satisfies

Mhy/2p

m

0.75mh
(7)

Wo(vg, m) < \@(1— >kW2(l/0,7T)—I—

@ The second term in the upper bound scales linearly as a function
of the condition number > = M/m, whereas the corresponding
term in (Cheng et al., 2018) scales as /2.

@ If we denote by K the number of iterations sulfficient for the error
to be smaller than ¢, our result leads to an expression of K in
which W (v, 7) is within a logarithm. The expression of K in
(Cheng et al., 2018, Theorem 1) scales linearly in Wa(vg, 7).

Dalalyan, A.S.
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Second-order KLMC

For k € N, we define H;, = V2f(d9;) and

Vi1 Yo(h)vy — Y1 (R)V f(Iy) El(cl+)1
pr— 2
Ousr| |00+ (Wwe — wmmm] v L;fjl

|p2(W)Hgwr | 7 H.¢"
@3 (h)Hyvp, Hel), |

where gy11(t) = [ e~y (s) ds and
@ the p x 4-matrices Zy41 := ( 2?175221762?1,52‘31) are iid,
@ the p rows of = are iid centered Gaussian with the covariance
matrix
h
0

C =/ [Wo(t); Y1(t); w2(t); 3(t)] T o (t); Pr(t); @2(t); @s(t)] dt.

Dalalyan, A.S. 34



Guarantees for the second-order KLMC

Theorem 6 (Dalalyan and Riou-Durand, 2020)

Assume that f is m-strongly convex, its gradient is M-Lipschitz, and its
Hessian is Ms-Lipschitz for the spectral norm. For every v > v/m + M

and h < m/(5vM), the distribution v, of the kth iterate of the second-
order KLMC algorithm satisfies

ho 2k 3302 MoMp  2h2M~/Mp
W (v, 7) g?(l—%) Wa(vo, 7) + 2l L

m?2 m

May be compared to the analogous bound for the KLMC:

0.75mh\*
WQ(V}WW)S\/i(l— er ) Wg(l/o,?T)—‘y-M.

m

Dalalyan, A.S.
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Concluding remarks

@ As soon as 72 > M, the KL process mixes exponentially fast with
a rate at least equal to {m A (v* — M)} /v. Therefore, for fixed
values of m and M, the nearly fastest rate of mixing is obtained
for v2 = m + M and is equal to m/v/m + M.

@ Optimization with respect to v and « leads to improved constants
but does not improve the rate as compared to the values v = 2
and v = 1/M used in (Cheng et al., 2018).

@ Leveraging second-order information may help to reduce the
number of steps of the algorithm by a factor proportional to 1/./¢

(v/p/e versus \/p/e).

@ Better discretization error obtained by the randomized mid-point
method (Shen and Lee, 2019) (p/3/%/® versus ,/p/e).

Dalalyan, A.S. 36
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