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Paul Langevin and Albert Einstein 1923 (from wikimedia)

Dalalyan, A.S. 2



1. Introduction



4

Sampling from a density

Problem: Given a probability density function π : Rp → R,
generate a random vector X such that

X ∼ π,

that is P(X ∈ A) =
∫
A
π(x) dx.
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Warm-up: rejection sampling 1/2

Let ν : Rp → R be an auxiliary, easily samplable, density.

Assume for a known M > 0, we have π(x) ≤Mν(x), ∀x.

Rejection method

Step 1 sample independently Y ∼ ν and U ∼ Unif([0,M ])

Step 2 if U ≤ π(Y )/ν(Y ), then set X = Y ,
else reject Y and return to Step 1.

Let K be the number of rounds required to sample X.

the random variable K ∼ Geom(p)

with p = P(U ≤ π(Y )/ν(Y )) = 1/M

the average number of rounds: E[K] = 1/p = M .
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Warm-up: rejection sampling 2/2
Uniform distribution on a compact set

Drawback of rejection sampling: in most cases M grows
exponentially fast in dimension p.

Consider the particular case π(x) ∝ 1l(x ∈ C) with C ⊂ [0, 1]p

compact.

We do not know the volume VC of the set C but we know that C
contains a ball of radius r > 0.

We naturally choose ν(x) = 1l(x ∈ [0, 1]p).

Then the almost only possible choice for M is M = 1/Vol(Bpr ).
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contains a ball of radius r > 0.
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Dalalyan, A.S. 6



7

Precise setting
Sampling from a log-concave density

We define the (log-posterior) function

f(θ) = − log π(θ).

and assume that it satisfies the smoothness and the strong convexity
assumptions: there exist m > 0 and M <∞ such that

f(θ)− f(θ̄)−∇f(θ̄)>(θ − θ̄) ≥ m

2
‖θ − θ̄‖22, (C1)

‖∇f(θ)−∇f(θ̄)‖2 ≤M‖θ − θ̄‖2, (C2)

for all θ, θ̄ ∈ Rp.

Goal: find nonasymptotic guarantees for approximately sampling from
π. More precisely, for every ε > 0 find a density µ such that one can
efficiently sample from µ and∥∥µ− π∥∥

TV
≤ ε or W2(µ, π) ≤ ε.
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Optimization versus integration
Guarantees for sampling I

Theorem

Under natural assumptions on the target distribution π(x) ∝ e−f(x)

for h small enough and for x ∈ Rp satisfying f(x) < E0, there exist
positive constants ρ ∈ (0, 1), C1(E0) and C2 independent of h such that
the bound

‖Pk(x, ·)− π‖TV ≤ C1(E0)
(
ρk + e−C2/h

1/4)
holds for all k. Here Pk is the transition probability of a k-step MCMC.

Dalalyan, A.S. 8
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Optimization versus integration
Guarantees for sampling II

Our notation: k > 1031p4(M/m)2 log5(�p/ε) implies that

‖Pk(x, ·)− π‖TV ≤ ε.

Dalalyan, A.S. 10
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Langevin based algorithms
To sample from π ∝ e−f , one can consider two versions of the
Langevin Monte Carlo (LMC) algorithm.

LMC (aka ULA) Start from ϑ(0) ∈ Rp and use the update rule

ϑ(k+1) = ϑ(k) − h∇f(ϑ(k)) +
√

2h ξ(k+1);

where h > 0 is the step-size, and ξ(1), . . . , ξ(k), . . . are
iid standard Gaussian and independent of ϑ(0).

MALA (Metropolis adjusted Langevin algorithm) Start from
ϑ̄
(0) ∈ Rp and use the update rule

y(k+1) = ϑ̄
(k) − h∇f(ϑ̄

(k)
) +
√

2h ξ(k+1),

ϑ̄
(k+1)

=

{
y(k+1), with prob. αk,
ϑ̄
(k)
, with prob. 1− αk

for a properly chosen acceptance rate
αk = α(ϑ̄

(k)
,y(k+1)).
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Background on the Langevin algorithm
Langevin diffusion

ϑ(k) is the Euler discretisation of the Langevin diffusion Lt,

the Langevin diffusion is defined by the SDE

dLt = −∇f(Lt) dt+
√

2 dW t, t ≥ 0.

Under (C1-C2), the SDE has a unique strong solution which is a
Markov process. It is ergodic with stationary density π ∝ e−f .

The transition kernel of this process is denoted by PtL(x, · ), that
is PtL(x, A) = P(Lt ∈ A|L0 = x).

(C1-C2) yield the spectral gap property of the semigroup
{PtL : t ∈ R+}. For any probability density ν,

‖νPtL − π‖TV ≤
1

2
DKL(ν‖π)1/2e−tm/2, ∀t ≥ 0.
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14

Illustration of the link between Langevin diffusion and sampling

Figure: Illustration of Langevin dynamics. The blue lines represent
different paths of a Langevin process. We see that the histogram of the
state at time t = 30 is close to the target density (the dark blue line).

Dalalyan, A.S. 14



15

Background on the Langevin algorithm
Euler discretization

the Langevin diffusion is defined by the SDE

dLt = −∇f(Lt) dt+
√

2 dW t, t ≥ 0.

ϑ(k) is the Euler discretisation of the Langevin diffusion Lt:
ϑ(k) ≈ Lkh.

To be more precise, we introduce a diffusion-type continuous-time
process D obeying the following SDE:

dDt = bt(D) dt+
√

2 dW t, t ≥ 0,

with the drift bt(D) = −∇f(Dkh) if t ∈ [kh, (k + 1)h[.

For this process, we have

(ϑ(1), . . . ,ϑ(k))
D
= (Dh, . . . ,Dkh).

Dalalyan, A.S. 15
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Optimization versus sampling

Optimization

Problem: compute

θ∗ ∈ arg min
θ∈Rp

f(θ).

Method: gradient descent

θk+1 = θk − h∇f(θk).

Sampling

Problem: Sample ϑ from the pdf

π(θ) = 1
C e
−f(θ), C =

∫
Rp e

−f

Method: Langevin Monte Carlo

ϑk+1 = ϑk − h∇f(ϑk) +
√

2h ξk.

with ξk iid N (0, I).

What about theoretical guarantees?

Dalalyan, A.S. 16
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Optimization versus sampling
Theoretical guarantees

We assume that for some m,M > 0f(θ)− f(θ′)−∇f(θ′)>(θ − θ′) ≥ (m/2)‖θ − θ′‖22,

‖∇f(θ)−∇f(θ′)‖2 ≤M‖θ − θ′‖2,
∀θ,θ′ ∈ Rp,

Theorem 0 (optim.): If h ≤ 2/(m+M), then

‖θK − θ∗‖2 ≤ (1−mh)K‖θ0 − θ∗‖2.

Theorem 1(sampling): If h ≤ 2/(m+M),

W2(νK , π) ≤ (1−mh)KW2(ν0, π) + 2M
m (hp)1/2.

(Durmus and Moulines, 2019; Dalalyan, 2017b)

Dalalyan, A.S. 17
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Lt = L0 −
∫ t

0
∇f(Ls) ds+

√
2W t

Dalalyan, A.S. 18
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Lt −Lkh = −
∫ t

kh

∇f(Ls) ds+
√

2 (W t −W kh)

Dt −Dkh = −(t− kh)∇f(Dkh) +
√

2 (W t −W kh)

Dalalyan, A.S. 19
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Sketch of the proof/2

This readily yields
L(k+1)h −D(k+1)h = Lkh −Dkh − h

(
∇f(Lkh)−∇f(Dkh)

)
+

∫ h

0

(∇f(Lkh+s)−∇f(Lkh)) ds.

Moreover, I− h∇f is a contraction.

We then check that with ρ = 1−mh,

‖L(k+1)h −D(k+1)h‖L2
≤ % ‖Lkh −Dkh‖L2

+ 2M(h3p)1/2.

Using this inequality repeatedly for k + 1, k, . . . , 1, we get
‖L(k+1)h −D(k+1)h‖L2

≤ %k+1 ‖L0 −D0‖L2 + 2M(h3p)1/2(1 + %+ . . . %k)

≤ %k+1W2(ν0, π) + 2M(h3p)1/2(1− %)−1.

Dalalyan, A.S. 20
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Improved result with variable step-size

Theorem 2 (Dalalyan and Karagulyan, 2017)

Consider the LMC with varying step-size hk+1 defined by

hk+1 =
2

M +m+ (2/3)m(k −K1)+
, k = 1, 2, . . .

where K1 ≥ 0 is the smallest integer satisfying

K1 ≥
ln
(
W2(ν0, π)/

√
p
)

+ ln(m/M) + (1/2) ln(M +m)

ln(1 + 2m/M−m)
.

For every positive integer k ≥ K1, we have

W2(νk, π) ≤
3.5M

√
p

m
√
M +m+ (2/3)m(k −K1)

.

Dalalyan, A.S. 21
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Remarks

1 Theorem 3 implies that O(p/ε2 log p/ε2) gradient evaluations are
enough for getting precision ≤ ε.

2 Theorem 2 implies that O(p/ε2) gradient evaluations are enough
for getting precision ≤ ε.

3 Similar result holds true for

the TV-distance (Dalalyan, 2017a), (Durmus and Moulines,
2017),
the KL-divergence (Cheng and Bartlett, 2017),
compact support π (Bubeck et al., 2018), (Brosse et al.,
2017).

4 Further smoothness: if f is Hessian-Lipschitz, then
O(p/ε log p/ε2) gradient evaluations are enough for getting
precision ≤ ε by the LMC. (Durmus and Moulines, 2019)

5 (Dwivedi et al., 2018; Chen et al., 2020) proved that for MALA,
O∗(p) gradient evaluations are enough for getting precision ≤ ε.

Dalalyan, A.S. 22
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Langevin as gradient flow in the space of measures
(Durmus et al., 2019)

The distribution νt of the Langevin difusion Lt is the solution of

ν̇t = −∇F (νt), t ≥ 0,

where

F (ν) =

∫
Rp

f(θ)ν(θ) dθ +

∫
Rp

ν(θ) log ν(θ) dθ.

and the time-derivative of the mapping t 7→ νt should be
understood in the sense of the Wasserstein-2 distance.

Theorem 1 bis (sampling, improved): If h ≤ 1/M ,

W2(νK , π) ≤ (1−mh)K/2W2(ν0, π) + (2Mhp/m)1/2.

The difference with Theorem 1 is that the condition number
(M/m) > 1 is now within the square root.

Dalalyan, A.S. 23
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The case of noisy gradient
The setting

The computation of ∇f might be costly or even impossible.

But one might have access to a noisy version of it:

Y k = ∇f(ϑk) + ζk,

where {ζ(k)} satisfy
(bounded bias) E

[∥∥E(ζk|ϑk)
∥∥2
2

]
≤ δ2p,

(bounded variance) E[‖ζk −E(ζk|ϑk)‖22] ≤ σ2p,

(ind. of updates) ξ(k+1) is independent of (ζ0, . . . , ζk).

The noisy LMC (nLMC) algorithm is then

ϑ(k+1,h) = ϑ(k,h) − hY (k,h) +
√

2h ξ(k+1).

Dalalyan, A.S. 24
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The case of noisy gradient
Error estimate

One has access to a noisy version of the gradient:

Y k = ∇f(ϑk) + ζk,

where {ζ(k)} satisfy
E
[∥∥E(ζk|ϑk)

∥∥2
2

]
≤ δ2p and E[‖ζk −E(ζk|ϑk)‖22] ≤ σ2p,

(ind. of updates) ξ(k+1) is independent of (ζ0, . . . , ζk).

The noisy LMC (nLMC) algorithm is then

ϑ(k+1,h) = ϑ(k,h) − hY (k,h) +
√

2h ξ(k+1).

Theorem 3

Let ϑ(K,h) be the K-th iterate of the nLMC and νK be its distribution. If
h ≤ 2/M+m then we have

W2(νK , π) ≤ (1−mh)KW2(ν0, π) +
2M

m
(hp)1/2 +

δ
√
p

m
+ σ(hp/m)1/2.

Dalalyan, A.S. 25
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Guarantees under additional smoothness

CONDITION F: f ∈ C2 and for some m, M , M2 > 0,
(strong convexity) ∇2f(θ) � mIp, for every θ ∈ Rp,

(bounded second derivative) ∇2f(θ) �MIp, for every θ ∈ Rp,

(further smoothness) ‖∇2f(θ)−∇2f(θ′)‖ ≤M2‖θ − θ′‖2.

Theorem 4
Let ϑK,h be the K-th iterate of the LMC and νK be its distribution. Then,
for every h ≤ 2/(m+M)

W2(νK , π) ≤ (1−mh)KW2(ν0, π) +
M2hp

2m
+

11Mh
√
Mp

5m
, (1)

W2(νLMCO
K , π) ≤ (1− 0.25mh)kW2(ν0, π) +

11.5M2h(p+ 1)

m
. (2)

Dalalyan, A.S. 26
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Kinetic Langevin diffusion

Under the same assumptions on the log-target f , one can
consider the kinetic Langevin diffusion

d

[
V t

Lt

]
=

[
−(γV t + u∇f(Lt))

V t

]
dt+

√
2γu

[
Ip

0p×p

]
dW t, (3)

where γ > 0 is the friction coeff. and u > 0 is the inverse mass.

The Langevin diffusion is obtained as a limit of Lγt, where L is
defined as in (3) with u = 1, when γ tends to infinity.

The continuous-time Markov process (Lt,V t) is positive
recurrent. The corresponding invariant density is given by

p∗(θ,v) ∝ exp
{
− f(θ)− 1

2u
‖v‖22

}
, θ ∈ Rp, v ∈ Rp. (4)

So under the invariant distribution, L and V are independent,
L ∼ π and V ∼ N (0, u).

Dalalyan, A.S. 28
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Kinetic Langevin diffusion

One can discretize this process to sample from p∗ (hence from π).

The quality of the resulting sampler will depend on two key
properties of the process: rate of mixing and smoothness of
sample paths.

(Cheng et al., 2018) establishes that for (γ, u) = (2, 1/M), the
mixing rate in the Wasserstein distance is e−(m/2M)t

On the other hand, sample paths of {L} are smooth of order
≈ 3/2 since

Lt = L0 +

∫ t

0

V s ds.

Combining these two properties, (Cheng et al., 2018) prove that a
suitable discretization of (3) leads to a sampler that achieves an
error ≤ ε after K iterations with K = O∗((p/ε2)1/2).

Dalalyan, A.S. 29
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Main questions answered in our work

Q1. What is the rate of mixing of the continuous-time kinetic Langevin
diffusion for general values of the parameters u and γ?

Q2. Is it possible to improve the rate of convergence of the KLMC by
optimizing it over the choice of u, γ and the step-size ?

Q3. If the function f happens to have a Lipschitz-continuous Hessian,
is it possible to devise a discretization that takes advantage of this
additional smoothness and leads to improved rates of
convergence?

gradient-Lipschitz Hessian-Lipschitz

LMC p/ε2 p/ε

KLMC
√
p/ε2 ???

Dalalyan, A.S. 30
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Mixing rate for any (γ, u)

A first observation is that, without loss of generality, we can focus
our attention to the case u = 1.

Lemma The modified process (V̄ t, L̄t) = (u−1/2V t/
√
u,Lt/

√
u) is

an kinetic Langevin diffusion with parameters γ̄ = γ/
√
u and

ū = 1.

Theorem 1 For every γ, t > 0, there exists
β ≥ {m ∧ (γ2 −M)}/γ such that

W2(µPLt , µ
′PLt ) ≤ (

√
2/γ)e−β tW2(µ, µ′). (5)

Slightly better β is

γ2 ∈ ]0,M ] ]M,m+M ] [m+M, 3m+M [ [3m+M,+∞[

β NA
γ2 −M

γ

γ

2
− M −m

2
√

2(m+M)− γ2
γ −

√
γ2 − 4m

2

Dalalyan, A.S. 31
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The KLMC algorithm

Set ψ0(t) = e−γt and ψk+1(t) =
∫ t
0
ψk(s) ds.

The discretization is defined by the recursion:[
vk+1

ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)∇f(ϑk)

ϑk + ψ1(h)vk − ψ2(h)∇f(ϑk)

]
+
√

2γ

[
ξk+1

ξ′k+1

]
, (6)

where (ξk+1, ξ
′
k+1) is a centered Gaussian satisfying s.t.

(ξj , ξ
′
j)’s are iid,

for any j, the vectors
(
(ξj)1, (ξ

′
j)1
)
,
(
(ξj)2, (ξ

′
j)2
)
, . . .,(

(ξj)p, (ξ
′
j)p
)

are iid with the covariance matrix

C =

∫ h

0

[ψ0(t) ψ1(t)]>[ψ0(t) ψ1(t)] dt.

This recursion is obtained by replacing ∇f(Lt) by ∇f(Lkh), on
t ∈ [kh, (k + 1)h], by renaming (V kh,Lkh) into (vk,ϑk) and by
explicitly solving the obtained linear SDE.

This algorithm, that we will refer to as KLMC, has been first
analyzed by Cheng et al. (2018).

Dalalyan, A.S. 32
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Guarantees for the KLMC algorithm

Theorem 5 (Dalalyan and Riou-Durand, 2020)

For every γ ≥
√
m+M and h ≤ m/(4γM), the distribution νk of

the kth iterate ϑk of the KLMC algorithm (6) satisfies

W2(νk, π) ≤
√

2
(

1− 0.75mh

γ

)k
W2(ν0, π) +

Mh
√

2p

m
. (7)

The second term in the upper bound scales linearly as a function
of the condition number κ ,M/m, whereas the corresponding
term in (Cheng et al., 2018) scales as κ3/2.

If we denote by K the number of iterations sufficient for the error
to be smaller than ε, our result leads to an expression of K in
which W2(ν0, π) is within a logarithm. The expression of K in
(Cheng et al., 2018, Theorem 1) scales linearly in W2(ν0, π).

Dalalyan, A.S. 33
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Second-order KLMC

For k ∈ N, we define Hk = ∇2f(ϑk) and[
vk+1

ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)∇f(ϑk)

ϑk + ψ1(h)vk − ψ2(h)∇f(ϑk)

]
+
√

2γ

[
ξ
(1)
k+1

ξ
(2)
k+1

]

−

[
ϕ2(h)Hkvk

ϕ3(h)Hkvk

]
−
√

2γ

[
Hkξ

(3)
k+1

Hkξ
(4)
k+1

]
,

where ϕk+1(t) =
∫ t
0
e−γ(t−s)ψk(s) ds and

the p× 4-matrices Ξk+1 := (ξ
(1)
k+1, ξ

(2)
k+1, ξ

(3)
k+1, ξ

(4)
k+1) are iid,

the p rows of Ξk+1 are iid centered Gaussian with the covariance
matrix

C̄ =

∫ h

0

[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)]>[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)] dt.

Dalalyan, A.S. 34
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Guarantees for the second-order KLMC

Theorem 6 (Dalalyan and Riou-Durand, 2020)

Assume that f is m-strongly convex, its gradient is M -Lipschitz, and its
Hessian is M2-Lipschitz for the spectral norm. For every γ ≥

√
m+M

and h ≤ m/(5γM), the distribution νk of the kth iterate of the second-
order KLMC algorithm satisfies

W2(νk, π) ≤ 7
(

1− mh

4γ

)2k
W2(ν0, π) +

33h2M2Mp

m2
+

2h2M
√
Mp

m
.

May be compared to the analogous bound for the KLMC:

W2(νk, π) ≤
√

2
(

1− 0.75mh

γ

)k
W2(ν0, π) +

Mh
√

2p

m
.
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Concluding remarks

As soon as γ2 > M , the KL process mixes exponentially fast with
a rate at least equal to {m ∧ (γ2 −M)}/γ. Therefore, for fixed
values of m and M , the nearly fastest rate of mixing is obtained
for γ2 = m+M and is equal to m/

√
m+M .

Optimization with respect to γ and u leads to improved constants
but does not improve the rate as compared to the values γ = 2
and u = 1/M used in (Cheng et al., 2018).

Leveraging second-order information may help to reduce the
number of steps of the algorithm by a factor proportional to 1/

√
ε

(
√
p/ε versus

√
p/ε).

Better discretization error obtained by the randomized mid-point
method (Shen and Lee, 2019) (p1/3/ε2/3 versus

√
p/ε).
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