Discretized Langevin algorithms for non-strongly log-concave targets

Arnak S. Dalalyan
CREST/ ENSAE Paris / IP Paris
Paul Langevin and Albert Einstein 1923 (from wikimedia)
1. Introduction
Problem: Given a probability density function $\pi : \mathbb{R}^p \to \mathbb{R}$, generate a random vector X such that

$$X \sim \pi,$$

that is $P(X \in A) = \int_A \pi(x) \, dx$.

Sampling from a density

Dalalyan, A.S.
Warm-up: rejection sampling 1/2

- Let $\nu : \mathbb{R}^p \rightarrow \mathbb{R}$ be an auxiliary, easily samplable, density.
- Assume for a known $M > 0$, we have $\pi(x) \leq M \nu(x), \forall x$.

Rejection method

Step 1 sample independently $Y \sim \nu$ and $U \sim \text{Unif}([0, M])$

Step 2 if $U \leq \pi(Y)/\nu(Y)$, then set $X = Y$,
else reject Y and return to Step 1.
Warm-up: rejection sampling 1/2

Let $\nu : \mathbb{R}^p \rightarrow \mathbb{R}$ be an auxiliary, easily samplable, density.

Assume for a known $M > 0$, we have $\pi(x) \leq M \nu(x)$, $\forall x$.

Rejection method

Step 1 sample independently $Y \sim \nu$ and $U \sim \text{Unif}([0, M])$

Step 2 if $U \leq \frac{\pi(Y)}{\nu(Y)}$, then set $X = Y$,
else reject Y and return to Step 1.

Let K be the number of rounds required to sample X.

the random variable $K \sim \text{Geom}(p)$

with $p = \mathbb{P}(U \leq \frac{\pi(Y)}{\nu(Y)}) = 1/M$

the average number of rounds: $\mathbb{E}[K] = 1/p = M$.
Warm-up: rejection sampling 2/2
Uniform distribution on a compact set

Drawback of rejection sampling: in most cases M grows exponentially fast in dimension p.

- Consider the particular case $\pi(x) \propto 1(x \in C)$ with $C \subset [0, 1]^p$ compact.
- We do not know the volume V_C of the set C but we know that C contains a ball of radius $r > 0$.
- We naturally choose $\nu(x) = 1(x \in [0, 1]^p)$.
- Then the almost only possible choice for M is $M = 1/V\text{ol}(B_r^p)$.
Drawback of rejection sampling: in most cases M grows exponentially fast in dimension p.

- Consider the particular case $\pi(x) \propto \mathbb{1}(x \in C)$ with $C \subset [0, 1]^p$ compact.
- We do not know the volume V_C of the set C but we know that C contains a ball of radius $r > 0$.
- We naturally choose $\nu(x) = \mathbb{1}(x \in [0, 1]^p)$.
- Then the almost only possible choice for M is $M = 1/\text{Vol}(B_r^p)$.

Most Markov Chain Monte Carlo algorithms suffer from the same drawback.
Precise setting
Sampling from a log-concave density

We define the (log-posterior) function

\[f(\theta) = -\log \pi(\theta). \]

and assume that it satisfies the smoothness and the strong convexity assumptions: there exist \(m > 0 \) and \(M < \infty \) such that

\[
\begin{align*}
 f(\theta) - f(\bar{\theta}) - \nabla f(\bar{\theta})^\top (\theta - \bar{\theta}) & \geq \frac{m}{2} \|\theta - \bar{\theta}\|_2^2, \quad (C1) \\
 \|\nabla f(\theta) - \nabla f(\bar{\theta})\|_2 & \leq M \|\theta - \bar{\theta}\|_2, \quad (C2)
\end{align*}
\]

for all \(\theta, \bar{\theta} \in \mathbb{R}^p \).

Goal: find nonasymptotic guarantees for approximately sampling from \(\pi \). More precisely, for every \(\epsilon > 0 \) find a density \(\mu \) such that one can efficiently sample from \(\mu \) and

\[
\|\mu - \pi\|_{TV} \leq \epsilon \quad \text{or} \quad W_2(\mu, \pi) \leq \epsilon.
\]
Optimization versus integration
Guarantees for sampling I

IMA Journal of Numerical Analysis (2013) 33, 80–110
Advance Access publication on March 19, 2012

Nonasymptotic mixing of the MALA algorithm

N. Bou-Rabee* AND M. Hairer

Theorem

Under natural assumptions on the target distribution \(\pi(x) \propto e^{-f(x)} \) for \(h \) small enough and for \(x \in \mathbb{R}^p \) satisfying \(f(x) < E_0 \), there exist positive constants \(\rho \in (0, 1) \), \(C_1(E_0) \) and \(C_2 \) independent of \(h \) such that the bound

\[
\| P^k(x, \cdot) - \pi \|_{TV} \leq C_1(E_0)(\rho^k + e^{-C_2/h^{1/4}})
\]

holds for all \(k \). Here \(P^k \) is the transition probability of a \(k \)-step MCMC.
Under natural assumptions on the target distribution $\pi(x) \propto e^{-f(x)}$ for h small enough and for $x \in \mathbb{R}^p$ satisfying $f(x) < E_0$, there exist positive constants $\rho \in (0, 1)$, $C_1(E_0)$ and C_2 independent of h such that the bound

$$\|P^k(x, \cdot) - \pi\|_{TV} \leq C_1(E_0) \left(\rho^k + e^{-C_2/h^{1/4}} \right)$$

holds for all k. Here P^k is the transition probability of a k-step MCMC.
Theorem

Under natural assumptions on the target distribution \(\pi(x) \propto e^{-f(x)}\) for \(h\) small enough and for \(x \in \mathbb{R}^p\) satisfying \(f(x) < E_0\), there exist positive constants \(\rho \in (0, 1), C_1(E_0)\) and \(C_2\) independent of \(h\) such that the bound

\[
\|P^k(x, \cdot) - \pi\|_{TV} \leq C_1(E_0) \left(\rho^k + e^{-C_2/h^{1/4}} \right)
\]

holds for all \(k\). Here \(P^k\) is the transition probability of a \(k\)-step MCMC.
Assumption 2.1. The potential energy $U \in C^4(\mathbb{R}^n, \mathbb{R})$ satisfies the following.

A) One has $U(x) \geq 1$ and, for any $C > 0$ there exists an $E > 0$ such that

$$U(x) \geq C(1 + |x|^2),$$

for all $U(x) > E$.

B) There exist constants $c \in (0, \beta), d > 0$ and $E > 0$ such that

$$\Delta U(x) \leq c|\nabla U(x)|^2 - dU(x), \quad (2.4)$$

for all $x \in \mathbb{R}^n$ satisfying $U(x) > E$.

C) The Hessian of U is bounded from below in the sense that there exists $C \geq 0$ such that

$$D^2U(x)(\eta, \eta) \geq -C|\eta|^2,$$

uniformly for all $x, \eta \in \mathbb{R}^n$.

D) There exists a constant $C > 0$ such that the first four derivatives of
Corollary 1.2 Let f be a logconcave function in \mathbb{R}^n, given in the sense of (LS1), (LS2) and (LS3). Then for

$$m > 10^{31} p^4 \frac{n^3 R^2}{r^2} \ln^5 \frac{n R^2}{\varepsilon r d / \beta},$$

the total variation distance of σ^m and π_f is less than ε.

Our notation: $k > 10^{31} p^4 (M/m)^2 \log^5 (\square p / \varepsilon)$ implies that

$$\| P_k(x, \cdot) - \pi \|_{TV} \leq \varepsilon.$$
2. Sampling using the Langevin diffusion
Langevin based algorithms

To sample from $\pi \propto e^{-f}$, one can consider two versions of the Langevin Monte Carlo (LMC) algorithm.

LMC (aka ULA) Start from $\vartheta^{(0)} \in \mathbb{R}^p$ and use the update rule

$$
\vartheta^{(k+1)} = \vartheta^{(k)} - h \nabla f(\vartheta^{(k)}) + \sqrt{2h} \xi^{(k+1)};
$$

where $h > 0$ is the step-size, and $\xi^{(1)}, \ldots, \xi^{(k)}, \ldots$ are iid standard Gaussian and independent of $\vartheta^{(0)}$.

MALA (Metropolis adjusted Langevin algorithm) Start from $\bar{\vartheta}^{(0)} \in \mathbb{R}^p$ and use the update rule

$$
\begin{align*}
\bar{\vartheta}^{(k+1)} &= \bar{\vartheta}^{(k)} - h \nabla f(\bar{\vartheta}^{(k)}) + \sqrt{2h} \xi^{(k+1)}, \\
\bar{\vartheta}^{(k+1)} &= \begin{cases}
\bar{y}^{(k+1)}, & \text{with prob. } \alpha_k, \\
\bar{\vartheta}^{(k)}, & \text{with prob. } 1 - \alpha_k
\end{cases}
\end{align*}
$$

for a properly chosen acceptance rate

$$
\alpha_k = \alpha(\bar{\vartheta}^{(k)}, \bar{y}^{(k+1)}).
$$

Dalalyan, A.S.
Background on the Langevin algorithm

Langevin diffusion

- $\mathcal{O}^{(k)}$ is the Euler discretisation of the Langevin diffusion L_t,
- the Langevin diffusion is defined by the SDE

$$dL_t = -\nabla f (L_t) \, dt + \sqrt{2} \, dW_t, \quad t \geq 0.$$

- Under (C1-C2), the SDE has a unique strong solution which is a Markov process. It is ergodic with stationary density $\pi \propto e^{-f}$.
- The transition kernel of this process is denoted by $P_L^t (x, \cdot)$, that is $P_L^t (x, A) = P (L_t \in A | L_0 = x)$.
- (C1-C2) yield the spectral gap property of the semigroup \{ $P_L^t : t \in \mathbb{R}_+$ \}. For any probability density ν,

$$\| \nu P_L^t - \pi \|_{TV} \leq \frac{1}{2} D_{KL} (\nu \| \pi)^{1/2} e^{-tm/2}, \quad \forall t \geq 0.$$

Dalalyan, A.S.
Illustration of the link between Langevin diffusion and sampling

Figure: Illustration of Langevin dynamics. The blue lines represent different paths of a Langevin process. We see that the histogram of the state at time $t = 30$ is close to the target density (the dark blue line).
Background on the Langevin algorithm

Euler discretization

- the Langevin diffusion is defined by the SDE

$$dL_t = -\nabla f(L_t) \, dt + \sqrt{2} \, dW_t, \quad t \geq 0.$$

- $\vartheta^{(k)}$ is the Euler discretisation of the Langevin diffusion L_t:

$\vartheta^{(k)} \approx L_{kh}$.

- To be more precise, we introduce a diffusion-type continuous-time process D obeying the following SDE:

$$dD_t = b_t(D) \, dt + \sqrt{2} \, dW_t, \quad t \geq 0,$$

with the drift $b_t(D) = -\nabla f(D_{kh})$ if $t \in [kh, (k + 1)h[$.

- For this process, we have

$$(\vartheta^{(1)}, \ldots, \vartheta^{(k)}) \overset{\mathcal{D}}{=} (D_h, \ldots, D_{kh}).$$
Optimization versus sampling

Optimization

- **Problem:** compute

\[\theta^* \in \arg \min_{\theta \in \mathbb{R}^p} f(\theta). \]

Sampling

- **Problem:** Sample \(\vartheta \) from the pdf

\[\pi(\theta) = \frac{1}{C} e^{-f(\theta)}, \quad C = \int_{\mathbb{R}^p} e^{-f} \]
Optimization versus sampling

Optimization

Problem: compute

\[\theta^* \in \arg \min_{\theta \in \mathbb{R}^p} f(\theta). \]

Method: gradient descent

\[\theta^{k+1} = \theta^k - h \nabla f(\theta^k). \]

Sampling

Problem: Sample \(\vartheta \) from the pdf

\[\pi(\theta) = \frac{1}{C} e^{-f(\theta)}, \quad C = \int_{\mathbb{R}^p} e^{-f} \]

Method: Langevin Monte Carlo

\[\vartheta^{k+1} = \vartheta^k - h \nabla f(\vartheta^k) + \sqrt{2h} \xi^k. \]

with \(\xi^k \) iid \(\mathcal{N}(0, I) \).
Optimization versus sampling

Optimization

- **Problem:** compute

\[\theta^* \in \arg \min_{\theta \in \mathbb{R}^p} f(\theta). \]

- **Method:** gradient descent

\[\theta^{k+1} = \theta^k - h \nabla f(\theta^k). \]

Sampling

- **Problem:** Sample \(\vartheta \) from the pdf

\[\pi(\theta) = \frac{1}{C} e^{-f(\theta)}, \quad C = \int_{\mathbb{R}^p} e^{-f}. \]

- **Method:** Langevin Monte Carlo

\[\vartheta^{k+1} = \vartheta^k - h \nabla f(\vartheta^k) + \sqrt{2h} \xi^k. \]

with \(\xi^k \) iid \(\mathcal{N}(0, I) \).

What about theoretical guarantees?
Optimization versus sampling
Theoretical guarantees

- We assume that for some $m, M > 0$
 \[
 \begin{align*}
 f(\theta) - f(\theta') - \nabla f(\theta')^\top (\theta - \theta') & \geq \frac{m}{2}\|\theta - \theta'\|_2^2, \\
 \|\nabla f(\theta) - \nabla f(\theta')\|_2 & \leq M\|\theta - \theta'\|_2,
 \end{align*}
 \forall \theta, \theta' \in \mathbb{R}^p,
 \]

- Theorem 0 (optim.): If $h \leq 2/(m + M)$, then
 \[
 \|\theta^K - \theta^*\|_2 \leq (1 - mh)^K \|\theta^0 - \theta^*\|_2.
 \]
Optimization versus sampling
Theoretical guarantees

- We assume that for some $m, M > 0$
\[
\begin{align*}
 f(\theta) - f(\theta') - \nabla f(\theta')^\top (\theta - \theta') & \geq (m/2)\|\theta - \theta'\|^2_2, \\
 \|\nabla f(\theta) - \nabla f(\theta')\|_2 & \leq M\|\theta - \theta'\|_2,
\end{align*}
\]
\hspace{5mm} $\forall \theta, \theta' \in \mathbb{R}^p$,

- Theorem 0 (optim.): If $h \leq 2/(m + M)$, then
\[
\|\theta^K - \theta^*\|_2 \leq (1 - mh)^K \|\theta^0 - \theta^*\|_2.
\]

- Theorem 1(sampling): If $h \leq 2/(m + M)$,
\[
W_2(\nu_K, \pi) \leq (1 - mh)^K W_2(\nu_0, \pi) + \frac{2M}{m} (hp)^{1/2}.
\]

(Durmus and Moulines, 2019; Dalalyan, 2017b)
\[L_t = L_0 - \int_0^t \nabla f(L_s) \, ds + \sqrt{2} W_t \]
\[L_t = L_0 - \int_0^t \nabla f(L_s) \, ds + \sqrt{2} W_t \]
\[L_t - L_{kh} = - \int_{k}^{t} \nabla f(L_s) \, ds + \sqrt{2} (W_t - W_{kh}) \]

\[D_t - D_{kh} = -(t - kh) \nabla f(D_{kh}) + \sqrt{2} (W_t - W_{kh}) \]
\[L_t - L_{kh} = - \int_{kh}^{t} \nabla f(L_s) \, ds + \sqrt{2} (W_t - W_{kh}) \]

\[D_t - D_{kh} = -(t - kh) \nabla f(D_{kh}) + \sqrt{2} (W_t - W_{kh}) \]
\[L_t - L_{kh} = -\int_{kh}^{t} \nabla f(L_s) \, ds + \sqrt{2} (W_t - W_{kh}) \]

\[D_t - D_{kh} = -(t - kh) \nabla f(D_{kh}) + \sqrt{2} (W_t - W_{kh}) \]
Sketch of the proof/2

This readily yields

\[L_{(k+1)h} - D_{(k+1)h} = L_{kh} - D_{kh} - h(\nabla f(L_{kh}) - \nabla f(D_{kh})) \]

\[+ \int_0^h (\nabla f(L_{kh+s}) - \nabla f(L_{kh})) \, ds. \]

Moreover, \(I - h\nabla f \) is a contraction.

We then check that with \(\rho = 1 - mh \),

\[\| L_{(k+1)h} - D_{(k+1)h} \|_{L_2} \leq \rho \| L_{kh} - D_{kh} \|_{L_2} + 2M(h^3p)^{1/2}. \]

Using this inequality repeatedly for \(k+1, k, \ldots, 1 \), we get

\[\| L_{(k+1)h} - D_{(k+1)h} \|_{L_2} \leq \rho^{k+1} \| L_0 - D_0 \|_{L_2} + 2M(h^3p)^{1/2}(1 + \rho + \ldots \rho^k) \]

\[\leq \rho^{k+1} W_2(\nu_0, \pi) + 2M(h^3p)^{1/2}(1 - \rho)^{-1}. \]
Improved result with variable step-size

Theorem 2 *(Dalalyan and Karagulyan, 2017)*

Consider the LMC with varying step-size h_{k+1} defined by

$$h_{k+1} = \frac{2}{M + m + (2/3)m(k - K_1)_+}, \quad k = 1, 2, \ldots$$

where $K_1 \geq 0$ is the smallest integer satisfying

$$K_1 \geq \frac{\ln \left(W_2(\nu_0, \pi)/\sqrt{p} \right) + \ln(m/M) + (1/2) \ln(M + m)}{\ln(1 + 2m/M - m)}.$$

For every positive integer $k \geq K_1$, we have

$$W_2(\nu_k, \pi) \leq \frac{3.5M\sqrt{p}}{m\sqrt{M + m + (2/3)m(k - K_1)}}.$$
Remarks

1. **Theorem 3** implies that $O(p/\varepsilon^2 \log p/\varepsilon^2)$ gradient evaluations are enough for getting precision $\leq \varepsilon$.

2. **Theorem 2** implies that $O(p/\varepsilon^2)$ gradient evaluations are enough for getting precision $\leq \varepsilon$.

3. Similar result holds true for
 - the TV-distance (Dalalyan, 2017a), (Durmus and Moulines, 2017),
 - the KL-divergence (Cheng and Bartlett, 2017),
 - compact support π (Bubeck et al., 2018), (Brosse et al., 2017).

4. **Further smoothness:** if f is Hessian-Lipschitz, then $O(p/\varepsilon \log p/\varepsilon^2)$ gradient evaluations are enough for getting precision $\leq \varepsilon$ by the LMC. (Durmus and Moulines, 2019)

5. (Dwivedi et al., 2018; Chen et al., 2020) proved that for MALA, $O^*(p)$ gradient evaluations are enough for getting precision $\leq \varepsilon$.

Dalalyan, A.S.
The distribution ν_t of the Langevin diffusion L_t is the solution of

$$\dot{\nu}_t = -\nabla \mathcal{F}(\nu_t), \quad t \geq 0,$$

where

$$\mathcal{F}(\nu) = \int_{\mathbb{R}^p} f(\theta) \nu(\theta) d\theta + \int_{\mathbb{R}^p} \nu(\theta) \log \nu(\theta) d\theta.$$

and the time-derivative of the mapping $t \mapsto \nu_t$ should be understood in the sense of the Wasserstein-2 distance.

Theorem 1 bis (sampling, improved): If $h \leq 1/M$,

$$W_2(\nu_K, \pi) \leq (1 - mh)^{K/2} W_2(\nu_0, \pi) + (2Mhp/m)^{1/2}.$$

The difference with Theorem 1 is that the condition number $(M/m) > 1$ is now within the square root.
The case of noisy gradient

The setting

- The computation of ∇f might be costly or even impossible.
- But one might have access to a noisy version of it:

$$Y^k = \nabla f(\vartheta^k) + \zeta^k,$$

where $\{\zeta^{(k)}\}$ satisfy

- (bounded bias) $\mathbb{E}[\|\mathbb{E}(\zeta^k | \vartheta^k)\|_2^2] \leq \delta^2 p$,
- (bounded variance) $\mathbb{E}[\|\zeta^k - \mathbb{E}(\zeta^k | \vartheta^k)\|_2^2] \leq \sigma^2 p$,
- (ind. of updates) $\xi^{(k+1)}$ is independent of $(\zeta^0, \ldots, \zeta^k)$.

- The noisy LMC (nLMC) algorithm is then

$$\vartheta^{(k+1, h)} = \vartheta^{(k, h)} - h Y^{(k, h)} + \sqrt{2h} \xi^{(k+1)}.$$
The case of noisy gradient

Error estimate

- One has access to a noisy version of the gradient:
 \[Y^k = \nabla f(\vartheta^k) + \zeta^k, \]

 where \(\{\zeta^{(k)}\} \) satisfy
 - \(\mathbb{E}\left[\|\mathbb{E}(\zeta^k | \vartheta^k)\|^2\right] \leq \delta^2p \) and \(\mathbb{E}\left[\|\zeta^k - \mathbb{E}(\zeta^k | \vartheta^k)\|^2\right] \leq \sigma^2p, \)
 - (ind. of updates) \(\xi^{(k+1)} \) is independent of \((\zeta^0, \ldots, \zeta^k) \).

- The noisy LMC (nLMC) algorithm is then
 \[\vartheta^{(k+1),h} = \vartheta^{(k),h} - hY^{(k),h} + \sqrt{2h} \xi^{(k+1)}. \]

Theorem 3

Let \(\vartheta^{(K),h} \) be the \(K \)-th iterate of the nLMC and \(\nu_K \) be its distribution. If \(h \leq \frac{2}{M+m} \) then we have

\[W_2(\nu_K, \pi) \leq (1 - mh)^K W_2(\nu_0, \pi) + \frac{2M}{m}(hp)^{1/2} + \frac{\delta \sqrt{p}}{m} + \sigma(hp/m)^{1/2}. \]
Guarantees under additional smoothness

CONDITION F: $f \in C^2$ and for some $m, M, M_2 > 0$,
- (strong convexity) $\nabla^2 f(\theta) \succeq mI_p$, for every $\theta \in \mathbb{R}^p$,
- (bounded second derivative) $\nabla^2 f(\theta) \preceq MI_p$, for every $\theta \in \mathbb{R}^p$,
- (further smoothness) $\|\nabla^2 f(\theta) - \nabla^2 f(\theta')\| \leq M_2\|\theta - \theta'\|_2$.

Theorem 4

Let $\theta_{K,h}$ be the K-th iterate of the LMC and ν_K be its distribution. Then, for every $h \leq 2/(m+M)$

$$W_2(\nu_K, \pi) \leq (1 - mh)^K W_2(\nu_0, \pi) + \frac{M_2hp}{2m} + \frac{11Mh\sqrt{Mp}}{5m}, \quad (1)$$

$$W_2(\nu_{K,\text{LMCO}}, \pi) \leq (1 - 0.25mh)^K W_2(\nu_0, \pi) + \frac{11.5M_2h(p+1)}{m}. \quad (2)$$
3. Sampling using the kinetic Langevin diffusion
Kinetic Langevin diffusion

Under the same assumptions on the log-target f, one can consider the kinetic Langevin diffusion

$$
\begin{align*}
\frac{d}{dt} \begin{bmatrix} V_t \\ L_t \end{bmatrix} &= \begin{bmatrix} -(\gamma V_t + u \nabla f(L_t)) \\ V_t \end{bmatrix} dt + \sqrt{2\gamma u} \begin{bmatrix} I_p \\ 0_{p \times p} \end{bmatrix} dW_t,
\end{align*}
$$

(3)

where $\gamma > 0$ is the friction coeff. and $u > 0$ is the inverse mass.

The Langevin diffusion is obtained as a limit of $L_{\gamma t}$, where L is defined as in (3) with $u = 1$, when γ tends to infinity.

The continuous-time Markov process (L_t, V_t) is positive recurrent. The corresponding invariant density is given by

$$
\begin{align*}
p_\star(\theta, v) &\propto \exp \left\{ -f(\theta) - \frac{1}{2u} \|v\|^2 \right\}, \\
&\quad \theta \in \mathbb{R}^p, \ v \in \mathbb{R}^p.
\end{align*}
$$

(4)

So under the invariant distribution, L and V are independent, $L \sim \pi$ and $V \sim \mathcal{N}(0, u)$.

Dalalyan, A.S.
Kinetic Langevin diffusion

- One can discretize this process to sample from p_* (hence from π).
- The quality of the resulting sampler will depend on two key properties of the process: rate of mixing and smoothness of sample paths.
- (Cheng et al., 2018) establishes that for $(\gamma, u) = (2, 1/M)$, the mixing rate in the Wasserstein distance is $e^{-(m/2M)t}$.
- On the other hand, sample paths of $\{L\}$ are smooth of order $\approx 3/2$ since
 \[L_t = L_0 + \int_0^t V_s \, ds. \]
- Combining these two properties, (Cheng et al., 2018) prove that a suitable discretization of (3) leads to a sampler that achieves an error $\leq \varepsilon$ after K iterations with $K = O^*(\varepsilon^2)^{1/2}$.
Main questions answered in our work

Q1. What is the rate of mixing of the continuous-time kinetic Langevin diffusion for general values of the parameters \(u \) and \(\gamma \)?

Q2. Is it possible to improve the rate of convergence of the KLMC by optimizing it over the choice of \(u, \gamma \) and the step-size?

Q3. If the function \(f \) happens to have a Lipschitz-continuous Hessian, is it possible to devise a discretization that takes advantage of this additional smoothness and leads to improved rates of convergence?

<table>
<thead>
<tr>
<th></th>
<th>gradient-Lipschitz</th>
<th>Hessian-Lipschitz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC</td>
<td>(p/\varepsilon^2)</td>
<td>(p/\varepsilon)</td>
</tr>
<tr>
<td>KLMC</td>
<td>(\sqrt{p/\varepsilon^2})</td>
<td>???</td>
</tr>
</tbody>
</table>
Mixing rate for any \((\gamma, u)\)

- A first observation is that, without loss of generality, we can focus our attention to the case \(u = 1\).

Lemma The modified process \((\bar{V}_t, \bar{L}_t) = (u^{-1/2}V_t/\sqrt{u}, L_t/\sqrt{u})\) is an kinetic Langevin diffusion with parameters \(\bar{\gamma} = \gamma/\sqrt{u}\) and \(\bar{u} = 1\).

Theorem 1 For every \(\gamma, t > 0\), there exists \(\beta \geq \{m \wedge (\gamma^2 - M)\}/\gamma\) such that

\[
W_2(\mu P^L_t, \mu' P^L_t) \leq (\sqrt{2}/\gamma)e^{-\beta t}W_2(\mu, \mu').
\] (5)

- Slightly better \(\beta\) is

<table>
<thead>
<tr>
<th>(\gamma^2 \in]0, M[</th>
<th>]M, m + M[</th>
<th>[m + M, 3m + M[</th>
<th>[3m + M, +\infty[</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>NA</td>
<td>(\frac{\gamma^2 - M}{\gamma})</td>
<td>(\frac{\gamma}{2} - \frac{M - m}{2\sqrt{2(m + M) - \gamma^2}})</td>
</tr>
</tbody>
</table>
The KLMC algorithm

- Set \(\psi_0(t) = e^{-\gamma t} \) and \(\psi_{k+1}(t) = \int_0^t \psi_k(s) \, ds \).
- The discretization is defined by the recursion:

\[
\begin{bmatrix}
\mathbf{v}_{k+1} \\
\mathbf{\vartheta}_{k+1}
\end{bmatrix} = \begin{bmatrix}
\psi_0(h)\mathbf{v}_k - \psi_1(h) \nabla f(\mathbf{\vartheta}_k) \\
\mathbf{\vartheta}_k + \psi_1(h)\mathbf{v}_k - \psi_2(h) \nabla f(\mathbf{\vartheta}_k)
\end{bmatrix} + \sqrt{2\gamma} \begin{bmatrix}
\xi_{k+1} \\
\xi'_{k+1}
\end{bmatrix},
\]

where \((\xi_{k+1}, \xi'_{k+1})\) is a centered Gaussian satisfying s.t.
- \((\xi_j, \xi'_j)\)'s are iid,
- for any \(j\), the vectors \(((\xi_j)_1, (\xi'_j)_1), ((\xi_j)_2, (\xi'_j)_2), \ldots, ((\xi_j)_p, (\xi'_j)_p)\) are iid with the covariance matrix

\[
\mathbf{C} = \int_0^h \begin{bmatrix}
\psi_0(t) & \psi_1(t)
\end{bmatrix}^\top \begin{bmatrix}
\psi_0(t) & \psi_1(t)
\end{bmatrix} \, dt.
\]

- This recursion is obtained by replacing \(\nabla f(L_t) \) by \(\nabla f(L_{kh}) \), on \(t \in [kh, (k+1)h] \), by renaming \((V_{kh}, L_{kh})\) into \((\mathbf{v}_k, \mathbf{\vartheta}_k)\) and by explicitly solving the obtained linear SDE.

- This algorithm, that we will refer to as KLMC, has been first analyzed by Cheng et al. (2018).
Guarantees for the KLMC algorithm

Theorem 5 (Dalalyan and Riou-Durand, 2020)

For every \(\gamma \geq \sqrt{m + M} \) and \(h \leq m/(4\gamma M) \), the distribution \(\nu_k \) of the \(k \)th iterate \(\vartheta_k \) of the KLMC algorithm (6) satisfies

\[
W_2(\nu_k, \pi) \leq \sqrt{2} \left(1 - \frac{0.75mh}{\gamma}\right)^k W_2(\nu_0, \pi) + \frac{Mh\sqrt{2\pi}}{m}.
\]

(7)

- The second term in the upper bound scales linearly as a function of the condition number \(\kappa \triangleq M/m \), whereas the corresponding term in (Cheng et al., 2018) scales as \(\kappa^{3/2} \).

- If we denote by \(K \) the number of iterations sufficient for the error to be smaller than \(\varepsilon \), our result leads to an expression of \(K \) in which \(W_2(\nu_0, \pi) \) is within a logarithm. The expression of \(K \) in (Cheng et al., 2018, Theorem 1) scales linearly in \(W_2(\nu_0, \pi) \).
Second-order KLMC

For $k \in \mathbb{N}$, we define $H_k = \nabla^2 f(\vartheta_k)$ and

$$
\begin{bmatrix}
v_{k+1} \\
\vartheta_{k+1}
\end{bmatrix} =
\begin{bmatrix}
\psi_0(h)v_k - \psi_1(h)\nabla f(\vartheta_k) \\
\vartheta_k + \psi_1(h)v_k - \psi_2(h)\nabla f(\vartheta_k)
\end{bmatrix} + \sqrt{2\gamma}
\begin{bmatrix}
\xi^{(1)}_{k+1} \\
\xi^{(2)}_{k+1}
\end{bmatrix}
\begin{bmatrix}
\varphi_2(h)H_kv_k \\
\varphi_3(h)H_kv_k
\end{bmatrix} - \sqrt{2\gamma}
\begin{bmatrix}
H_k\xi^{(3)}_{k+1} \\
H_k\xi^{(4)}_{k+1}
\end{bmatrix},
\end{bmatrix}
$$

where $\varphi_{k+1}(t) = \int_0^t e^{-\gamma(t-s)}\psi_k(s)\,ds$ and

- the $p \times 4$-matrices $\Xi_{k+1} := (\xi^{(1)}_{k+1}, \xi^{(2)}_{k+1}, \xi^{(3)}_{k+1}, \xi^{(4)}_{k+1})$ are iid,
- the p rows of Ξ_{k+1} are iid centered Gaussian with the covariance matrix

$$
\tilde{C} = \int_0^h [\psi_0(t); \psi_1(t); \varphi_2(t); \varphi_3(t)]^\top [\psi_0(t); \psi_1(t); \varphi_2(t); \varphi_3(t)]\,dt.
$$

Dalalyan, A.S.
Theorem 6 (Dalalyan and Riou-Durand, 2020)

Assume that f is m-strongly convex, its gradient is M-Lipschitz, and its Hessian is M_2-Lipschitz for the spectral norm. For every $\gamma \geq \sqrt{m + M}$ and $h \leq m / (5\gamma M)$, the distribution ν_k of the kth iterate of the second-order KLMC algorithm satisfies

$$W_2(\nu_k, \pi) \leq 7 \left(1 - \frac{mh}{4\gamma}\right)^{2k} W_2(\nu_0, \pi) + \frac{33h^2 M_2 M p}{m^2} + \frac{2h^2 M \sqrt{Mp}}{m}.$$

May be compared to the analogous bound for the KLMC:

$$W_2(\nu_k, \pi) \leq \sqrt{2} \left(1 - \frac{0.75mh}{\gamma}\right)^k W_2(\nu_0, \pi) + \frac{M h \sqrt{2p}}{m}.$$

Guarantees for the second-order KLMC
Concluding remarks

- As soon as $\gamma^2 > M$, the KL process mixes exponentially fast with a rate at least equal to $\left\{ m \wedge (\gamma^2 - M) \right\} / \gamma$. Therefore, for fixed values of m and M, the nearly fastest rate of mixing is obtained for $\gamma^2 = m + M$ and is equal to $m/\sqrt{m + M}$.

- Optimization with respect to γ and u leads to improved constants but does not improve the rate as compared to the values $\gamma = 2$ and $u = 1/M$ used in (Cheng et al., 2018).

- Leveraging second-order information may help to reduce the number of steps of the algorithm by a factor proportional to $1/\sqrt{\varepsilon}$ ($\sqrt{p/\varepsilon}$ versus $\sqrt{p/\varepsilon}$).

- Better discretization error obtained by the randomized mid-point method (Shen and Lee, 2019) ($p^{1/3}/\varepsilon^{2/3}$ versus \sqrt{p}/ε).
thank you
References I

References II

