Convergence of the kinetic annealing for general potentials
Joint work with Pierre Monmarché

Lucas Journel

Laboratoire Jacques-Louis Lions
Introduction to simulated annealing

\[U : \mathbb{R}^d \rightarrow \mathbb{R}_+. \]

Goal:

\[\min_{\mathbb{R}^d} U. \]
Introduction to simulated annealing

\[U : \mathbb{R}^d \rightarrow \mathbb{R}_+. \]

Goal:

\[
\min_{\mathbb{R}^d} U.
\]

Design stochastic process \((X_t)\) whose law is close to:

\[
\pi_{\beta_t}(dx) \propto e^{-\beta_t U(x)} dx
\]

where \(\beta_t \xrightarrow{t \to \infty} \infty\).

\[
\pi_{\beta_t}(U(x) > \delta) \xrightarrow{t \to \infty} 0.
\]
Examples of process used in simulated annealing

- Overdamped Langevin Process (OLP):
 \[dX_t = -\nabla U(X_t)dt + \sqrt{2\beta_t^{-1}} dB_t. \]

- Kinetic Langevin Process (KLP):
 \[
 \begin{align*}
 dX_t &= Y_t dt \\
 dY_t &= -\nabla U(X_t)dt - \gamma_t Y_t dt + \sqrt{2\gamma_t \beta_t^{-1}} dB_t.
 \end{align*}
 \]

- Local equilibrium of KLP:
 \[
 \mu_{\beta_t}(dx dy) \propto e^{-\beta_t H(x, y)} dx dy
 \]
 where \(H(x, y) = U(x) + \frac{|y|^2}{2}. \)
Cooling schedule and energy barrier

Cooling schedule:

\[\beta_t = \frac{\ln(e^{c\beta_0} + t)}{c}. \]
Cooling schedule and energy barrier

Cooling schedule:

$$\beta_t = \frac{\ln(e^{c\beta_0} + t)}{c}. \quad (\beta_0)$$

Largest energy barrier:

$$c^* = \sup_{x_1, x_2} E(x_1, x_2), \quad (c^*)$$

where

$$E(x_1, x_2) = \inf_{\xi} \left\{ \max_{0 \leq t \leq 1} U(\xi(t)) - U(x_1) - U(x_2) \right\}. \quad (E)$$

Figure – Example of potential
Historical review

Theorem (Holley, Kusuoka, Stroock 89)

\[M \text{ smooth compact manifold and } U : M \rightarrow \mathbb{R}_+ . \]
\[(X_t) \text{ OLP with cooling schedule } (\beta_t). \]
Then if \(c > c^* \), \(U(X_t) \rightarrow \min U \text{ in probability.} \)
If there exists \(p \in M \), bottom of a well of height greater than \(c \), then
\[\mathbb{P}(\inf U(X_t) > U(p)) > 0. \]
Historical review

• $U : \mathbb{R}^d \rightarrow \mathbb{R}_+$, $U(\infty) = \infty$, $|\nabla U|(\infty) = \infty$,
• $\inf_{\mathbb{R}^d} |\nabla U|^2 - \Delta U > -\infty$.

(X_t) Overdamped Langevin Process.

Theorem (Chiang, Hwang, Sheu 87)

If $c > 3/2c^*$, $U(X_t) \rightarrow \min U$ in probability.

Theorem (Royer 89, Miclo 92)

If $c > c^*$, $U(X_t) \rightarrow \min U$ in probability.
(\(X_t\)) Overdamped Langevin Process.

Theorem (Zitt 08)

\[
U : \mathbb{R}^d \rightarrow \mathbb{R}_+, \quad U(x) \geq \ln(|x|^m) - C, \quad \|\nabla U\|_\infty < \infty,
\]

\(\Delta U \leq 0\) outside a compact.

Then if \(c > c^*\), \(U(X_t) \rightarrow \min U\) in probability.

Theorem (Fournier, Tardif 21)

\[
U : \mathbb{R}^d \rightarrow \mathbb{R}_+, \quad U(\infty) = \infty, \quad \int_{\mathbb{R}^d} e^{-\alpha_0 U} < \infty
\]

Then if \(c > c^*\), \(U(X_t) \rightarrow \min U\) in probability.
(\(X_t, Y_t\)) Kinetic Langevin Process. \(H(x, y) = U(x) + |y|^2/2\).

Theorem (Monmarché 18)

\[U : \mathbb{R}^d \to \mathbb{R}_+, \ x \cdot \nabla U(x) \geq r|x|^2 - M, \quad \|\nabla^2 U\|_\infty < \infty. \]

Then if \(c > c^*\), \(U(X_t) \to \min U\) in probability.

Theorem (J, Monmarché 21)

\[U : \mathbb{R}^d \to \mathbb{R}_+, \ U(\infty) = \infty, \ \int_{\mathbb{R}^d} e^{-\alpha_0 U} < \infty. \]

Then if \(c > c^*\), \(H(X_t, Y_t) \to \min U\) in probability.

If there exists \(p\), bottom of a well of height greater than \(c^*\), then
\[\mathbb{P}(\inf U(X_t) > U(p)) > 0. \]
A basic example

\[dX_t = -\nabla U(X_t) \, dt + \sqrt{2\beta^{-1}} \, dB_t, \]

\(U \) quadratic at infinity.

- \(\pi_\beta \) stationary measure.
- \(f_t = \mathcal{L}aw(X_t), \, h_t = \frac{df_t}{d\pi_\beta}. \)

\[\partial_t h_t = \beta^{-1} \Delta h_t - \nabla U. \nabla h_t =: L^* h_t. \]
A basic example

Definition (Carré du champ)

\[
\Gamma f = \frac{1}{2} (L^* f^2 - 2 f L^* f).
\]

\[
\Gamma f = \sqrt{2\beta^{-1}} |\nabla f|^2.
\]

\[
H_t = \int_{\mathbb{R}^d} (h_t - 1)^2 d\pi_\beta \geq \| f_t - \pi_\beta \|^2_{TV}.
\]

\[
H'_t = - \int_{\mathbb{R}^d} \Gamma(h_t) d\pi_\beta.
\]
A more basic example

Poincaré inequality

For all \(h : \mathbb{R}^d \to \mathbb{R} \), \(\int_{\mathbb{R}^d} h d\pi_\beta = 1 \):

\[
\int_{\mathbb{R}^d} (h - 1)^2 d\pi_\beta \leq \lambda_\beta \int_{\mathbb{R}^d} \Gamma(h) d\pi_\beta.
\]

\(\lambda_\beta \) satisfies:

\[
\lim_{\beta \to \infty} \beta^{-1} \ln(\lambda_\beta) = c^*.
\]

\[
H_t = \int_{\mathbb{R}^d} (h_t - 1)^2 d\pi_\beta.
\]

\[
H'_t = -\int_{\mathbb{R}^d} \Gamma(h_t) d\pi_\beta \leq -\lambda_\beta^{-1} H_t.
\]

\[
H_t \leq e^{-\lambda_\beta^{-1} t} H_0.
\]
Problems

\[\beta = \beta_t. \]

\[H'_t = -\int_{\mathbb{R}^d} \Gamma(h_t) d\pi_{\beta_t} + \beta'_t A_t. \]
Problems

- $\beta = \beta_t$.

\[H'_t = -\int_{\mathbb{R}^d} \Gamma(h_t)d\pi_{\beta_t} + \beta'_t A_t. \]

- U is such that π_β does not satisfy Poincaré inequality.
$\beta = \beta_t$.

$$H'_t = -\int_{\mathbb{R}^d} \Gamma(h_t) d\pi_{\beta_t} + \beta'_t A_t.$$

U is such that π_{β} does not satisfy Poincaré inequality.

For kinetic Langevin process:

$$\Gamma(f) = |\nabla_y f|^2,$$

hence no Poincaré inequality of the form

$$\int_{\mathbb{R}^d} (h - 1)^2 d\mu_{\beta} \leq \lambda_{\beta} \int_{\mathbb{R}^d} \Gamma(h) d\mu_{\beta}.$$
Generator of the process:

\[L_t = y \nabla_x - \nabla U \nabla y - \gamma t y \nabla y + \gamma t \beta_t^{-1} \Delta y \]

Let \(f_t \) the law of the process and \(h_t = \frac{f_t}{\mu_{\beta_t}} \).

\(L^*_t \) the dual of \(L_t \) in \(L^2(\mu_{\beta_t}) \):

\[\partial_t h_t = L^*_t h_t - \beta'_t H h_t \]
Plan of the proof

1. Almost surely, $\sup_t H(X_t, Y_t) < \infty$.

 a. Almost surely, $\lim \inf_{t \to \infty} H(X_t, Y_t)$.

 b. For compact set C, there exists $K > 0$ such that

 $$\inf_{x \in C} \mathbb{P}(\sup_t H(X_t, Y_t) \leq K) \geq 1/4.$$

2. If X lives in a compact set, there is convergence.
Fix $K > 1$, $L_K > 1$, $M_K = (\mathbb{R}/2L_K\mathbb{Z})^d$, such that $\{U \leq K\} \subset M_K$. $U^K : M_K \rightarrow \mathbb{R}$, $U^K = U$ on $\{U \leq K\}$

\[
\begin{align*}
\begin{cases}
 dX^K_t = Y^K_t dt \\
 dY^K_t = -\nabla_x U^K(X_t) dt - \gamma_t Y^K_t dt + \sqrt{2\gamma_t \beta_t^{-1}} dB_t.
\end{cases}
\end{align*}
\]

(1)

\[
\begin{aligned}
\left\{ \sup_{t \geq 0} H(X_t, Y_t) \leq K \right\} = \left\{ \sup_{t \geq 0} H_K(X^K_t, Y^K_t) \leq K \right\},
\end{aligned}
\]

where $H_K(x, y) = U^K(x) + |y|^2/2$.

\[
\mu^K_\beta(dx dy) \propto e^{-\beta H_K(x, y)} dx dy.
\]
Hypocoercivity à la Villani:

\[
\phi_t(h) = |(\nabla_x + \nabla_y)h|^2 + \sigma_t h^2
\]

with \(\sigma_t = \frac{1}{2} + 2\sqrt{\gamma_t^{-1}} \beta_t (1 + \|\nabla U^K\|_\infty + \gamma_t)^2 \), we introduce

\[
\tilde{N}(t) = \int_{\mathbb{R}^d \times \mathbb{R}^d} \phi_t \left(h^K_t - 1 \right) d\mu^K_{\beta_t}
\]

\[
\tilde{I}(t) = \int_{M_K \times \mathbb{R}^d} \left| \nabla h^K_t \right|^2 d\mu^K_{\beta_t}.
\]

Differentiating \(\tilde{N} \), one can (formally) check that

\[
\tilde{N}'(t) \leq -\frac{1}{2} \tilde{I}(t) + C \beta'_t (1 + \beta_t) \tilde{N}(t).
\]
Poincaré inequality:

\[\tilde{N}(t) \leq \lambda_{\beta t} \tilde{I}(t) \]

With:

\[\frac{1}{\beta} \ln(\lambda_{\beta}) \xrightarrow{\beta \to \infty} c^* \]

Conclusion:

\[\tilde{N}'(t) \leq \left(-\frac{C'}{(1 + t)^{c^*/c}} + \frac{C(1 + \ln(1 + t))}{(1 + t)} \right) \tilde{N}(t) \]
Proposition

If $c > c^*$, then for all $K > 1$, all C^∞-probability density f_0 with compact support in $M_K \times \mathbb{R}^d$, and all $\delta > 0$,

$$\mathbb{P}_{f_0} \left(H_K(X^K_t, Y^K_t) > \delta \right) \underset{t \to +\infty}{\longrightarrow} 0.$$

$$\mathbb{P} \left(H_K(X^K_t, Y^K_t) > \delta \right) \leq \| h^K_t \|_{L^2} (\mu_{\beta_t}(H_K > \delta))^{1/2}$$
Non-convergence for fast cooling schedule

Goal:

$$\mathbb{P} \left(\sup_{t \geq 0} H(X_t, Y_t) \leq H(x_0, y_0) + c + \delta \right) > 0$$

Figure – Example of c^*
THANK YOU FOR YOUR ATTENTION