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1



Outline

Linear regression: “universal” lower bound

Linear regression: distribution-free guarantees

Logistic regression

2



Linear regression
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• Prediction problem: predict y ∈ R based on covariates x ∈ Rd

• Random pair (X ,Y ) ∼ P on Rd × R, distribution P unknown

• Risk R(f ) = E[(f (X )− Y )2] of prediction function f : Rd → R

• Flin = {fθ : θ ∈ Rd} with fθ(x) = 〈θ, x〉 linear functions
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• Prediction problem: predict y ∈ R based on covariates x ∈ Rd

• Random pair (X ,Y ) ∼ P on Rd × R, distribution P unknown

• Risk R(f ) = E[(f (X )− Y )2] of prediction function f : Rd → R

• Flin = {fθ : θ ∈ Rd} with fθ(x) = 〈θ, x〉 linear functions

• Given (X1,Y1), . . . , (Xn,Yn) ∈ Rd ×R i.i.d. sample from P, find

function f̂ : Rd → R whose excess risk

E(f̂ ) = R(f̂ )− inf
θ∈Rd

R(fθ)

is small in expectation/with high probability. I.e., prediction

error R(f̂ ) of f̂ almost as small as that of best linear function.
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Linear regression: “universal” lower

bound



Linear regression with independent noise

Assume Y = 〈θ∗,X 〉+ ε with ε|X ∼ N (0, 1) and θ∗ ∈ Rd .

Best guarantee uniform over Rd : minimax risk (depending on PX )

E∗(PX ) = inf
θ̂n

sup
θ∗∈Rd

Eθ∗ [R(f
θ̂n

)− R(fθ∗)] .

Then, least-squares θ̂lsn = argminθ n
−1
∑n

i=1(Yi − 〈θ,Xi 〉)2 is

minimax for every PX , and (assuming w.l.o.g. that EXXT = Id)

E∗(PX ) = E Tr
{( n∑

i=1

XiX
T
i

)−1}
.
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Gaussian vs. general distributions

Recall the minimax risk for prediction:

E∗(PX ) = inf
θ̂n

sup
θ∗∈Rd

Eθ∗ [R(f
θ̂n

)− R(fθ∗)] = E Tr
{( n∑

i=1

XiX
T
i

)−1}
Using matrix convexity, E∗(PX ) > E Tr{(nId)−1} = d/n.

If X ∼ N (0, Id) (Gaussian case), then (Wishart matrices)

E∗(PX ) =
d

n − d − 1

(
→ γ

1− γ
if d/n→ γ ∈ (0, 1)

)
.

Proposition (M., 2019)

For every distribution PX on Rd (with EXXT = Id),

E∗(PX ) >
d

n − d + 1

(
→ γ

1− γ
if d/n→ γ ∈ (0, 1)

)
.
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Lower bound in terms of signal strength

Instead of sup over θ∗ ∈ Rd : Prior θ∗ ∼ N (0, (η/d)Id).

η = E‖θ∗‖2 = E[〈θ∗,X 〉2] signal-to-noise ratio (SNR).

Theorem (“Marchenko-Pastur” lower bound; M., 2019)

For any distribution PX with E[XXT] = Id , the Bayes risk writes

E Tr
{( n∑

i=1

XiX
T
i +

d

η
Id

)−1}
>

d

n + 1
SMP

( d

n + 1
,

d

n + 1
η−1
)

where SMP(γ, λ) =
−(1− γ + λ) +

√
(1− γ + λ)2 + 4γλ

2λγ
.

Matching limit for Gaussian X (Marchenko-Pastur law) as

d/n→ γ. General lower bound valid for any distribution,

Gaussian distribution is “asymptotically easiest”.
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Exact extremality of the spherical distribution?

Question

Is it true that, for any n > d > 1 and η > 0, the spherical

distribution PX (uniform on the sphere of radius
√
d) minimizes

the Bayes risk:

E∗(PX , η) = E Tr
{( n∑

i=1

XiX
T
i +

d

η
Id

)−1}
among all distributions on Rd such that EXXT = Id?

True among spherically invariant distributions (including the

Gaussian), so asymptotically minimal as d/n→ γ.

Related to certain matrix inequalities (would follow from a possible

extension of the Golden-Thomson inequality).
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Linear regression: distribution-free

guarantees



Upper bounds

We considered lower bounds, allowing to identify the “best case”

(Gaussian covariates). What about upper bounds?

Under strong tail assumptions on P(X ,Y ) (e.g. “sub-Gaussian”

vectors), least squares θ̂lsn = argminθ n
−1
∑n

i=1(Yi − 〈θ,Xi 〉)2 has

optimal O(d/n) risk with high probability.

A recent line of work on robust regression (e.g. Audibert & Catoni

’11, Lugosi & Mendelson’19, Oliveira’16, Lecué & Lerasle’20) shows that

more sophisticated estimators θ̂n achieve O(d/n) risk under heavy

tails, e.g. moment equivalence for X (and likewise for errors):

∀θ ∈ Rd , (E〈θ,X 〉4)1/4 6 κ(E〈θ,X 〉2)1/2 .

Question: Is it possible to remove any assumption on X?
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Distribution-free regression

Joint distribution P(X ,Y ) characterized by PX and PY |X .

We want guarantees that are valid for any distribution PX of X

on Rd , and under minimal assumptions on Y |X .

Main assumption (on PY |X )

There exists a constant m > 0 such that

sup
x∈Rd

E[Y 2|X = x ] 6 m2.

This assumption is necessary: no distribution-free guarantee is

achievable without it. This holds if Y is bounded: |Y | 6 m a.s.,

but also allows for heavy tails (only 2 moments).
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Limitations of linear predictors

An predictor f̂n is linear if it consists of a linear function f
θ̂n

.

Remark: this includes least squares, but also most procedures in

the literature (including in robust regression).

Proposition

For all n, d > 1 and any linear predictor f̂n, there exists a

distribution P with |Y | 6 1 such that

ER(f̂n)− inf
θ∈Rd

R(fθ) & 1.

(Upper bound of 1 trivially achieved by zero function f̂n ≡ 0.)

No nontrivial distribution-free guarantee for linear predictors.
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Classical bound for truncated least squares

Truncated least squares: thresholds predictions to [−1, 1]

f̂trunc(x) = max(−1,min(1, 〈θ̂lsn , x〉)).

Nonlinear (due to truncation).

Let freg(x) = E[Y |X = x ].

Theorem (Györfi, Kohler, Krzyzak, Walk, 2002)

If E[Y 2|X ] 6 1, then truncated least squares satisfies:

ER(f̂trunc)− inf
θ∈Rd

R(fθ) 6 c
d log n

n
+ 7
(

inf
θ∈Rd

R(fθ)− R(freg)
)

Distribution-free result (no assumption on PX !)

Approximation term 7(infθ∈Rd R(fθ)−R(freg)), extra log n factor.
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Improved bound in expectation for truncated least squares

Truncated least squares: f̂trunc(x) = max(−1,min(1, 〈θ̂lsn , x〉))

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

If E[Y 2|X ] 6 1, then

ER(f̂trunc)− inf
θ∈Rd

R(fθ) 6
8d

n + 1
.

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term 7(infθ∈Rd R(fθ)− R(freg)) and

extra log n; gives explicit constant c = 8. Simple proof

(leave-one-out argument).
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Truncated least squares fails with constant probability

Truncated least squares: f̂trunc(x) = max(−1,min(1, 〈θ̂lsn , x〉)), with

in-expectation bound ER(f̂trunc)− infθ∈Rd R(fθ) 6 8d/n.

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For any n, d > 1, there exists a distribution of (X ,Y ) with

|Y | 6 1 such that

P
(
R(f̂trunc)− inf

θ∈Rd
R(fθ) > c

)
> c .

With constant probability, f̂trunc has trivial/constant excess risk.

Contradiction (?) with d/n bound in expectation? No, since

R(f̂trunc)− infθ∈Rd R(fθ) can take negative values as f̂trunc is

nonlinear (compensates in expectation).
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Nearly deviation-optimal estimator

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For every n > d > 1 and δ ∈ (0, 1), there is a procedure f̂n such

that, for any distribution satisfying E[Y 2|X ] 6 1, with probability

1− δ,

R(f̂n)− inf
θ∈Rd

R(fθ) 6 c
d log(en/d) + log(1/δ)

n
.

Nearly (up to log) deviation-optimal procedure, distribution-free

w.r.t. PX and only E[Y 2|X ] 6 1 (minimal assumption).

Explicit, though involved, procedure. Computationally expensive

(exponential time in dimension d).
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Open question: practical optimal estimator?

Question

Is there a procedure f̂n computable in polynomial time in n

and d such that, for any distribution of (X ,Y ) with E[Y 2|X ] 6 1

(or even |Y | 6 1 a.s.), with probability 1− δ,

R(f̂n)− inf
θ∈Rd

R(fθ) 6 c
d + log(1/δ)

n
?
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Logistic regression



Logistic regression

Here, binary target y ∈ {−1, 1} (instead of y ∈ R).

Given x ∈ Rd , assign conditional probabilities p(±1|x) on y .

Efficient procedures with Õ(d/n) excess risk in expectation are

known (sampling-based Bayesian methods: e.g. Yang’00, Catoni’04,

Kakade & Ng’05, or optimization-based “virtual sample” approach in M.,

Gäıffas’19, see also Jézéquel, Gaillard, Rudi’20).

However, known procedures with optimal high-probability

guarantees have computational time exponential in dimension d .

Same open question as in the linear case: existence of

computationally efficient optimal procedures?

16



Logistic regression

Here, binary target y ∈ {−1, 1} (instead of y ∈ R).

Given x ∈ Rd , assign conditional probabilities p(±1|x) on y .
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Summary

• In high-dimensional linear regression with d � n, Gaussian

covariates are almost/asymptotically the “easiest” ones.

• It is possible to obtain Õ(d/n) statistical guarantees for linear

regression without any assumption on the distribution of

covariates. However, this requires using nonlinear predictors.

• The known procedure is not practical/efficiently computable.

• Related results and questions in logistic regression.
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Thank you!
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