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INTRODUCTION



Context : MPO Project I
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Maintenance Planning

A maintenance strategy determines the:

1 Components requiring preventive maintenance (PM).

2 Optimal frequency of PM actions.

3 Maintenance interval.

4 Failure risks.

5 Maintenance cost.
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Assumptions I

!△ However this may not always be the reality !
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Maintenance Constraints I
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OPTIMAL INDIVIDUAL
MAINTENANCE DATES



Optimal Individual Maintenance Dates I

Individual maintenance dates

• We determine the individual maintenance date 𝑇
𝑜𝑝𝑡

𝑖

• Scheduling maintenance tasks

𝑡1𝑖 = 𝑇
𝑜𝑝𝑡

𝑖
− 𝑎𝑔𝑒𝑖 + 𝑇𝑠𝑡𝑎𝑟𝑡 (1)

9



PROBLEM
FORMULATION



Problem identification

We consider:
■ A system with 𝑛 components

■ Each maintenance action has a 𝑑𝑖 > 0 duration

■ Each maintenance component requires 𝑟𝑖 > 0 resources

■ A Planning horizon [0, 𝑇]

We define the following sets:

• J : Planning Horizon Set J = 1, 2 . . . , 𝑇

• I : Maintenance components Set I = 1, 2, . . . , 𝑛
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Parameters

• 𝐶
𝑝𝑟𝑒𝑣

𝑖
: component-specific PM action cost

• 𝐶𝑐𝑜𝑟𝑟𝑒𝑐
𝑖

: component-specific CM action cost

• 𝛼𝑖 , 𝛽𝑖 : Weibull Law shape and scale parameters for com-
ponent 𝑖

• 𝑑𝑖 : maintenance action duration of component 𝑖

• 𝑟𝑖 : the number of resources required for the maintenance
action of component 𝑖

• 𝑅 : The total available resources in the system
• 𝑅 𝑗 : The total available resources at time 𝑗
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Variables

1 Binary Variables:

𝑚𝑖 𝑗 =

{
1, if object 𝑖 is maintained at instant 𝑗

0, otherwise

2 Continuous Variables:
• 𝑥𝑖 : maintenance date of component 𝑖
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Objective Function

• 𝑐𝑜𝑠𝑡 (𝑥𝑖) is the cost of maintenance of component 𝑖 (at main-
tenance time 𝑥𝑖):

𝑐𝑜𝑠𝑡 (𝑥𝑖) =
𝐶

𝑝𝑟𝑒𝑣

𝑖
+ 𝐶𝑐𝑜𝑟𝑟𝑒𝑐

𝑖

(
𝑥𝑖
𝛼𝑖

)𝛽𝑖
𝑥𝑖

𝑥𝑖 ≠ 0 (2)

• Minimize the total cost of maintenance
(a non linear function):

𝐹 (𝑥) =
𝑛∑︁
𝑖=1

𝑐𝑜𝑠𝑡 (𝑥𝑖). (3)
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Constraints I

Maintenance duration

• If a maintenance action for component 𝑖 starts at 𝑗 , it
must be executed within the planning horizon.

𝑗𝑚𝑖 𝑗 + (𝑑𝑖 − 1) ≤ 𝑇 ∀𝑖 ∈ I ∀ 𝑗 ∈ T (4)
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Constraints

Maintenance frequency
• Each component must be maintained once.

𝑇∑︁
𝑗=1

𝑚𝑖 𝑗 ≥ 1 ∀𝑖 ∈ I (5)

𝑚𝑖 𝑗′ ≤ 1 − 𝑚𝑖 𝑗 ∀ 𝑗 ′ > 𝑗 ∈ T ∀𝑖 ∈ I (6)
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Constraints

Resource constraints

• A component can be maintained if and only if there are
available resources.

𝑛∑︁
𝑖=1

𝑚𝑖 𝑗𝑟𝑖 ≤ 𝑅 𝑗 ,∀ 𝑗 ∈ T (7)
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Constraints

Resources release constraints:

• Used resources are restored.
• PM actions can be executed simultaneously.

𝑚𝑖 𝑗𝑟𝑖 ≤ 𝑅 −
𝑛∑︁

𝑘=0
𝑘≠𝑖

𝑇∑︁
𝑗′< 𝑗

𝑗′+𝑑𝑘> 𝑗

𝑚𝑘 𝑗′𝑟𝑘 ∀𝑖 ∈ I ∀ 𝑗 ∈ T (8)
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MNLP Model

min𝐹 (𝑥) =
𝑛∑︁
𝑖=1

𝑐𝑜𝑠𝑡 (𝑥𝑖)

s.t. 𝑗𝑚𝑖 𝑗 + (𝑑𝑖 − 1) ≤ 𝑇 ∀𝑖 ∈ I ∀ 𝑗 ∈ T
𝑇∑︁
𝑗=1

𝑚𝑖 𝑗 ≥ 1 ∀𝑖 ∈ I

𝑛∑︁
𝑖=1

𝑚𝑖 𝑗𝑟𝑖 ≤ 𝑅 𝑗 ∀ 𝑗 ∈ T

𝑚𝑖 𝑗𝑟𝑖 ≤ 𝑅 −
𝑛∑︁

𝑘=0
𝑘≠𝑖

𝑇∑︁
𝑗′< 𝑗

𝑗′+𝑑𝑘> 𝑗

𝑚𝑘 𝑗′𝑟𝑘 ∀𝑖 ∈ I ∀ 𝑗 ∈ T

𝑚𝑖 𝑗′ ≤ 1 − 𝑚𝑖 𝑗 ∀𝑖 ∈ I ∀ 𝑗 ′ > 𝑗 ∈ T
𝑥𝑖 ≤ 𝑚𝑖 𝑗𝑇 + 𝜖 ∀𝑖 ∈ I ∀ 𝑗 ∈ T 𝜖 > 0

𝑥𝑖 ≥ 0 ∀𝑖 ∈ I
𝑚𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ I ∀ 𝑗 ∈ T
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NUMERICAL
SIMULATIONS



Simulation settings I

Remark

• Pyomo optimization language
• The Mixed-Integer Nonlinear Decomposition Toolbox

(MindtPy) solver
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Example 1
We consider a system with 5 components using the
following parameters:

• 𝑇 = 20 , 𝑅 = 18
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Example 1

We obtain the following planification
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Example 2
We consider a system with 10 components using the
following parameters:

• 𝑇 = 25 , 𝑅 = 17
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Example 2

We obtain the following result :
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Performance Assessment

• Randomly generated systems

• Cost parameters

• Considered metrics:

1 Execution time

2 Maintenance Cost

3 Convergence Rates

4 Scalability
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Performance Assessment

Table: Simulation parameters

Parameters 𝑥𝑖 𝑡𝑖 𝐶𝑃𝑟𝑒𝑣
𝑖

𝐶𝑐𝑜𝑟𝑟𝑒𝑐
𝑖

𝑟𝑖 𝑑𝑖 𝑅 𝑗

Values [10, 40] [1.25, 2.75] [40, 150] [140, 350] [1, 10] [2, 8] [0, 20]
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Performance Assessment
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Stochastic Maintenance Optimization

Problem formulation

• Let 𝑂 be the set of system’s components.
• For each component 𝑜𝑖 ∈ 𝑂 we associate a duration

random variable 𝑑𝑖 as Gaussian probabilistic distribution
: ∀𝑜𝑖 ∈ 𝑂, 𝑑𝑖 ∼ N(`(𝑑𝑖), 𝜎2 (𝑑𝑖))

• At each time step 𝑗 , we assume 𝑅 𝑗 as a random variable
following a Gaussian distribution :
∀ 𝑗 ∈ 𝑇, 𝑅 𝑗 ∼ N(`(𝑅 𝑗 ), 𝜎2 (𝑅 𝑗 ))
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Stochastic Maintenance Optimization

Problem formulation

• Uncertainty of the repair time

P
(
𝑗𝑚𝑖 𝑗 + (𝑑𝑖 − 1) ≤ 𝑇

)
≥ 𝛼𝑖 ,∀𝑖 ∈ I,∀ 𝑗 ∈ T (9)

• Uncertainty of resources availability

P

(
𝑛∑︁
𝑖=1

𝑚𝑖 𝑗𝑟𝑖 ≤ 𝑅 𝑗

)
≥ 𝛽𝑖 ,∀ 𝑗 ∈ T (10)

P
©«𝑚𝑖 𝑗𝑟𝑖 ≤ 𝑅 𝑗 −

𝑛∑︁
𝑘=1,𝑘≠𝑖

𝑇∑︁
𝑗′< 𝑗

𝑗′+𝑑𝑘> 𝑗

𝑚𝑘 𝑗′𝑟𝑘

ª®®®¬ ≥ 𝛾𝑖∀ 𝑗 ∈ T (11)
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Stochastic Maintenance Optimization
Approximations of Chance Constraints

• Deterministic equivalent formulation of the stochastic
repair time constraints :

𝑗𝑚𝑖 𝑗 ≤ 𝑇 + 1 − `𝑖 (𝑑) + 𝜙−1 (𝛼𝑖)𝜎𝑖 (𝑑) (12)

• Deterministic equivalent formulation of the stochastic
resources limitation constraints

𝑛∑︁
𝑖=1

𝑚𝑖, 𝑗 × 𝑟𝑖 ≤ `(𝑅 𝑗 ) + 𝜙−1 (1 − 𝛽) 𝜎(𝑅 𝑗 ) (13)

𝑚𝑖 𝑗𝑟𝑖 −
𝑛∑︁

𝑘=1,𝑘≠𝑖

𝑇∑︁
𝑗′< 𝑗

𝑗′+𝑑𝑘> 𝑗

𝑚𝑘 𝑗′𝑟𝑘 ≤ `(𝑅 𝑗 ) + 𝜙−1 (1 − 𝛾) 𝜎(𝑅 𝑗 )

S Khebbache et al., Stochastic Maintenance Optimization of Complex Industrial Systems under Uncertainty of Repair
Time and Resources. The 6𝑡ℎ international Conference on System Reliability and Safety. Venise, Italy, Novembre 23-25,
2022.
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Deterministic Equivalent Model

(𝐷𝐸𝑀) :



min𝑥 𝐶 (𝑥) = ∑𝑛
𝑖=1 𝑐𝑜𝑠𝑡 (𝑥𝑖)

𝑠.𝑡. :

𝑗𝑚𝑖 𝑗 ≤ 𝑇 + 1 − `𝑖 (𝑑) + 𝜙−1 (𝛼𝑖)𝜎𝑖 (𝑑),∀𝑖 ∈ I∑𝑛
𝑖=1 𝑚𝑖, 𝑗 × 𝑟𝑖 ≤ `(𝑅 𝑗 ) + 𝜙−1 (1 − 𝛽) 𝜎(𝑅 𝑗 );

∀𝑖 ∈ I
𝑚𝑖 𝑗𝑟𝑖 −

∑𝑛
𝑘=1,𝑘≠𝑖

∑𝑇
𝑗′< 𝑗

𝑗′+𝑑𝑘> 𝑗

𝑚𝑘 𝑗′𝑟𝑘 ≤ `(𝑅 𝑗 )+

+𝜙−1 (1 − 𝛾) 𝜎(𝑅 𝑗 )∑𝑇
𝑥𝑖=1

𝑚𝑖𝑥𝑖 ≤ \𝜎𝑖 + `𝑖 ,∀𝑖 ∈ I
𝑥𝑖 ≤ 𝑚𝑖, 𝑗 × 𝑇,∀𝑖 ∈ I∑𝑇

𝑗=1 𝑚𝑖 𝑗 ≥ 1 ∀𝑖 ∈ I
𝑚𝑖 𝑗′ ≤ 1 − 𝑚𝑖 𝑗 ,∀𝑖 ∈ I ∀ 𝑗 ′ > 𝑗 ∈ T
𝑚𝑖 𝑗 = {0, 1}𝑛, 𝑥𝑖 > 0,∀𝑖 ∈ I

(14)
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Analysis

𝑗𝑚𝑖 𝑗 ≤ 𝑇 + 1 − `𝑖 (𝑑) + 𝜙−1 (𝛼𝑖)𝜎𝑖 (𝑑),∀𝑖 ∈ I (15)

For 𝜎(𝑑𝑖) = 1, we discuss the following three cases:
• 𝛼 = 0: Then we have 𝜙−1 (𝛼) = −∞. (15) is indicating that no

maintenance is possible with confidence levels very low
or close to 0.

• 𝛼 = 0.5: Then we have 𝜙−1 (𝛼) = 0. (15) is converging totally
to the provided original deterministic valid inequality.

• 𝛼 = 1: Then we have 𝜙−1 (𝛼) = +∞. (15) is indicating that
maintenance operations are totally relaxed and can be
done according to the availability of the repair man.
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Analysis

𝑛∑︁
𝑖=1

𝑚𝑖, 𝑗 × 𝑟𝑖 ≤ `(𝑅 𝑗 ) + 𝜙−1 (1 − 𝛽) 𝜎(𝑅 𝑗 );∀ 𝑗 ∈ T (16)

we propose to assess three cases as follows:
• 𝛽 = 0: Then we have 𝜙−1 (1 − 𝛽) = +∞. (16) is indicating that

for low values of confidence levels (close to zero), the
resources available become theoretically large (infinity).

• 𝛽 = 0.5: Then we have 𝜙−1 (1 − 𝛽) = 0. (16) is converging to
the original and deterministic valid inequality.

• 𝛽 = 1: Then we have 𝜙−1 (1 − 𝛽) = −∞. (16) is indicating that
maintenance could not occur and this due to lack of
resources (repair man).
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CONCLUSION &
FUTURE WORK



Conclusion & Perspectives I

Conclusion

• Considered Resource and Duration Constraints
• A new MNLP model.
• Stochastic formulation to deal with uncertainty

Future Work

■ We will extend the result to adress maintenance group-
ing problems

■ We will consider routing constraints for maintenance op-
timisation in multi-sites factories
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Questions ?


	Introduction
	Optimal Individual Maintenance Dates
	Problem Formulation
	Numerical Simulations

	Stochastic Maintenance Optimization of Complex Industrial Systems under Uncertainty of Repair Time and Resources 
	Conclusion & Perspectives
	Bibliography
	References

