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Main classes of volatility models

Prices are often modeled as continuous semi-martingales of the form

dPt = Pt(µtdt + σtdWt).

The volatility process σs is the most important ingredient of the model.
Practitioners consider essentially three classes of volatility models :

Deterministic volatility (Black and Scholes 1973),

Local volatility (Derman and Kani, Dupire 1994)

Stochastic volatility (Hull and White 1987, Heston 1993, Hagan et al.
2002,...).

In term of regularity, in these models, the volatility is either very smooth or
with a smoothness similar to that of a Brownian motion.
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Fractional Brownian motion

Definition

The fractional Brownian motion (fBm) with Hurst parameter H is the only
process WH to satisfy :

Self-similarity : (WH
at )

L
= aH(WH

t ).

Stationary increments : (WH
t+h −WH

t )
L
= (WH

h ).

Gaussian process with E[WH
1 ] = 0 and E[(WH

1 )2] = 1.

Proposition

For all ε > 0, WH is (H − ε)-Hölder a.s.

Mandelbrot-van Ness representation

WH
t =

∫ t

0

dWs

(t − s)
1
2
−H

+

∫ 0

−∞

( 1

(t − s)
1
2
−H
− 1

(−s)
1
2
−H

)
dWs .
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About option data

Classical stochastic volatility models generate reasonable dynamics for
the volatility surface.

However they do not allow to fit the volatility surface, in particular
the term structure of the ATM skew :

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

,

where k is the log-moneyness and τ the maturity of the option.
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About option data : the volatility skew

The black dots are non-parametric estimates of the S&P ATM volatility
skews ; the red curve is the power-law fit ψ(τ) = A τ−0.4.
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About option data : fractional volatility

The skew is well-approximated by a power-law function of time to
expiry τ . In contrast, conventional stochastic volatility models
generate a term structure of ATM skew that is constant for small τ .

Models where the volatility is driven by a fBm generate an ATM
volatility skew of the form ψ(τ) ∼ τH−1/2, at least for small τ .
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Intraday volatility estimation

We are interested in the dynamics of the (log)-volatility process. We use
two proxies for the spot (squared) volatility of a day.

A 5 minutes-sampling realized variance estimation taken over the
whole trading day (8 hours).

A one hour integrated variance estimator based on the model with
uncertainty zones (Robert and R. 2012).

From now on, we consider realized variance estimations on the S&P over
3500 days, but the results are “universal”.
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The log-volatility

Figure – The log volatility log(σt) as a function of t, S&P.
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Measure of the regularity of the log-volatility

The starting point of this work is to consider the scaling of the moments
of the increments of the log-volatility. Thus we study the quantity

m(∆, q) = E[| log(σt+∆)− log(σt)|q],

or rather its empirical counterpart.

The behavior of m(∆, q) when ∆ is close to zero is related to the
smoothness of the volatility (in the Hölder or even the Besov sense).
Essentially, the regularity of the signal measured in lq norm is s if
m(∆, q) ∼ c∆qs as ∆ tends to zero.
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Scaling of the moments

Figure – log(m(q,∆)) = ζq log(∆) + Cq. The scaling is not only valid as ∆
tends to zero, but holds on a wide range of time scales.
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Monofractality of the log-volatility

Figure – Empirical ζq and q → Hq with H = 0.14 (similar to a fBm with Hurst
parameter H).
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Distribution of the log-volatility increments

Figure – The distribution of the log-volatility increments is close to Gaussian.
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A geometric fBm model

The RFSV model

These empirical findings suggest we model the log-volatility as a fractional
Brownian motion :

σt = σeνW
H
t .
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A particularly intriguing property : volatility multiscaling

Figure – Empirical volatility over 10, 3 and 1 years.
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Rough volatility on different time intervals

Figure – Simulated volatility over 10, 3 and 1 years. We observe the same
alternations of periods of high market activity with periods of low market activity.

Mathieu Rosenbaum Rough volatility 17



Apparent multiscaling in our model

Let LH,ν be the law on [0, 1] of the process eνW
H
t .

Then the law of the volatility process on [0,T ] renormalized on [0, 1] :

σtT/σ0 is LH,νT
H

.

If one observes the volatility on T = 10 years (2500 days) instead of
T = 1 day, the parameter νTH defining the law of the volatility is
only multiplied by 2500H ∼ 3.

Therefore, one observes quite the same properties on a very wide
range of time scales.

The roughness of the volatility process (H = 0.1) implies a
multiscaling behavior of the volatility.
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On the universality of rough volatility

Towards universality

Rough volatility appears to be a universal phenomenon : Similar
values for H on more than 10.000 assets.

We want to understand why : Microstructural foundations for rough
volatility. (Hawkes processes)

Can we also deal with complex derivatives such as VIX options in the
rough volatility framework ? (Zumbach effect and Quadratic rough
Heston)

We obtain very accurate volatility forecasts thanks to rough volatility
models. Can we deduce from this paradigm some fundamental
universal patterns in the endogenous part of the volatility formation
process ? (Deep learning)
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Literature

Rough volatility network

https ://sites.google.com/site/roughvol/

Forthcoming book
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Building the model

Necessary conditions for a good microscopic price model

We want :

A tick-by-tick model.

A model reproducing the stylized facts of modern electronic markets
in the context of high frequency trading.

A model helping us to understand the rough dynamic of volatility
from the high frequency behavior of market participants.
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Building the model

Stylized facts 1-2

Markets are highly endogenous, meaning that most of the orders have
no real economic motivations but are rather sent by algorithms in
reaction to other orders, see Bouchaud et al., Filimonov and Sornette.

Mechanisms preventing statistical arbitrages take place on high
frequency markets, meaning that at the high frequency scale, building
strategies that are on average profitable is hardly possible.
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Building the model

Stylized facts 3-4

There is some asymmetry in the liquidity on the bid and ask sides of
the order book. In particular, a market maker is likely to raise the
price by less following a buy order than to lower the price following
the same size sell order.

A large proportion of transactions is due to large orders, called
metaorders, which are not executed at once but split in time.
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Building the model

Hawkes processes

Our tick-by-tick price model is based on Hawkes processes in
dimension two.

A two-dimensional Hawkes process is a bivariate point process
(N+

t ,N
−
t )t≥0 taking values in (R+)2 and with intensity (λ+

t , λ
−
t ) of

the form :(
λ+
t

λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.
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Building the model

The microscopic price model

Our model is simply given by

Pt = N+
t − N−t .

N+
t corresponds to the number of upward jumps of the asset in the

time interval [0, t] and N−t to the number of downward jumps. Hence,
the instantaneous probability to get an upward (downward) jump
depends on the location in time of the past upward and downward
jumps.

By construction, the price process lives on a discrete grid.

Statistical properties of this model have been studied in details.
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Encoding the stylized facts

The right parametrization of the model

Recall that(
λ+
t

λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.

High degree of endogeneity of the market→ L1 norm of the largest
eigenvalue of the kernel matrix close to one (nearly unstable regime).

No arbitrage→ ϕ1 + ϕ3 = ϕ2 + ϕ4.

Liquidity asymmetry→ ϕ3 = βϕ2, with β > 1.

Metaorders splitting→ ϕ1(x), ϕ2(x) ∼
x→∞

K/x1+α, α ≈ 0.6.
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Rough Heston model

Limit theorem

After suitable scaling in time and space, the long term limit of our price
model satisfies the following rough Heston dynamics :

Pt =

∫ t

0

√
VsdWs −

1

2

∫ t

0
Vsds,

Vt = V0 +
1

Γ(α)

∫ t

0
(t − s)α−1λ(θ − Vs)ds +

λν

Γ(α)

∫ t

0
(t − s)α−1

√
VsdBs ,

with

d〈W ,B〉t =
1− β√

2(1 + β2)
dt.

The Hurst parameter H satisfies H = α− 1/2.

Mathieu Rosenbaum Rough volatility 28



An even deeper result

No-arbitrage implies rough volatility and power law market impact

We have shown that combining typical behaviours of market
participants at the high frequency scale automatically generates rough
volatility.

We can actually prove that only assuming no-statistical arbitrage
implies rough volatility.

The key phenomenon to obtain this result is the market impact.

In a perfect market from a statistical arbitrage viewpoint, H = 0.

There is a one to one connection between the value of H and the
shape of the market impact curve.

H = 0 corresponds to square-root market impact.
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Deriving the characteristic function of the rough Heston
model

Strategy

From our last theorem, we are able to derive the characteristic
function of our high frequency Hawkes-based price model.

We then pass to the limit.
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Characteristic function of rough Heston models

We write :

I 1−αf (x) =
1

Γ(1− α)

∫ x

0

f (t)

(x − t)α
dt, Dαf (x) =

d

dx
I 1−αf (x).

Theorem

The characteristic function at time t for the rough Heston model is given
by

exp
(∫ t

0
g(a, s)ds +

V0

θλ
I 1−αg(a, t)

)
,

with g(a, ) the unique solution of the fractional Riccati equation :

Dαg(a, s) =
λθ

2
(−a2 − ia) + λ(iaρν − 1)g(a, s) +

λν2

2θ
g2(a, s).
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Comments on the theorem

The rough Heston formula

The formula is the very same as the celebrated Heston formula, up to
the replacement of a classical time derivative by a fractional
derivative.

This formula allows for fast derivatives pricing and risk management.

Thanks to this approach, we can derive the infinite dimensional
Markovian structure underlying rough Heston models, leading to
explicit hedging formulas.
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Further aspects of volatility

Super-Heston rough volatility and Zumbach effect

All the works on microstructural foundations of rough volatility have
produced rough Heston type models.

In the context of rough models, there are other aspects of volatility
that one could wish to understand from a microstructural perspective.

Going beyond the square root associated to the dynamic of the
volatility in the rough Heston model→ additional additive or
multiplicative factor leading to fatter volatility tails : Super-Heston
rough volatility.

Zumbach effect.
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Further aspects of volatility

Zumbach effect (Zumbach et al.) : description

Feedback of price returns on volatility.

Price trends induce an increase of volatility.

In the literature (notably works by J.P. Bouchaud and co-authors), a
way to reinterpret the Zumbach effect is to consider that the
predictive power of past squared returns on future volatility is
stronger than that of past volatility on future squared returns.

To check this on data, one typically shows that the covariance
between past squared price returns and future realized volatility (over
a given duration) is larger than that between past realized volatility
and future squared price returns.

We refer to this version of Zumbach effect as weak Zumbach effect.
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Further aspects of volatility

Weak and strong Zumbach effect

It is shown in Gatheral et al. that the rough Heston model reproduces
the weak form of Zumbach effect.

However, it is not obtained through feedback effect, which is the
motivating phenomenon in the original paper by Zumbach. It is only
due to the dependence between price and volatility induced by the
correlation of the Brownian motions driving their dynamics.

In particular in the rough Heston model, the conditional law of the
volatility depends on the past dynamic of the price only through the
past volatility.

We speak about strong Zumbach effect when the conditional law of
future volatility depends not only on past volatility trajectory but also
on past returns.
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A convenient microscopic model encoding Zumbach effect

Quadratic Hawkes processes

Inspired by Blanc et al., we model high frequency prices using
quadratic Hawkes processes.

Jump sizes of the price Pt are i.i.d taking values −1 and 1 with
probability 1/2 and jump times are those of a point process Nt with
intensity

λt = µ+

∫ t

0
φ(t − s)dNs + Z 2

t , with Zt =

∫ t

0
k(t − s)dPs .

The component Zt is a moving average of past returns.

If the price has been trending in the past, Zt is large leading to high
intensity. On the contrary if it has been oscillating, Zt is close to zero
and there is no feedback from the returns on the volatility. So Zt is a
(strong) Zumbach term.
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One particular scaling limit

Quadratic rough Heston model

dSt = St
√

VtdWt , Vt = a(Zt − b)2 + c,

where a, b and c some positive constants and Zt follows

Zt =

∫ t

0
f α,λ(t − s)θ0(s)ds +

∫ t

0
f α,λ(t − s)

√
VsdWs ,

with α ∈ (1/2, 1), λ > 0 and θ0 a deterministic function.

Zt is path-dependent : a weighted average of past returns.

c : minimal instantaneous variance.

b > 0 : asymmetry of the feedback effect.

a : sensitivity of the volatility feedback.

A log-normal rough volatility model with strong Zumbach
effect.
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The Volatility Index

Definition of the VIX

Introduced in 1993 by the CBOE.

VIX is the square root of the price of a specific basket of options on
the S&P 500 Index (SPX) with maturity ∆ = 30 days such that

VIXt = − 2

∆

√
E[log(St+∆/St)|Ft ]× 100,

with S the SPX index.

VIX futures and VIX options exist.
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The joint calibration problem

VIX options

More than 500,000 VIX options traded each day.

Quite wide spreads for VIX options : non-mature market.

VIX is by definition a derivative of the SPX, any reasonable
methodology must necessarily be consistent with the pricing of SPX
options.

Designing a model that jointly calibrates SPX and VIX options prices
is known to be extremely challenging.

This problem is sometimes considered to be the holy grail of volatility
modeling.

We simply refer to it as the joint calibration problem.
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The joint calibration problem

Attempts to solve the joint calibration problem

Theoretical approch by J. Guyon : the joint calibration problem is
interpreted as a model-free constrained martingale transport problem.
Perfect calibration of VIX options smile at time T1 and SPX options
smiles at T1 and T2 = T1 + 30 days. Hard to be extended to any set
of maturities and high computational cost.

Models with jumps : most of them fail to reproduce VIX smiles for
maturities shorter than one month.

Continuous models : Unsuccessful so far. Interpretation : the very
large negative skew of short-term SPX options, which in continuous
models implies a very large volatility of volatility, seems inconsistent
with the comparatively low levels of VIX implied volatilities

Mathieu Rosenbaum Rough volatility 43



The VIX conjecture

The joint calibration problem and continuous models

“So far all the attempts at solving the joint SPX/VIX smile
calibration problem [using a continuous time model] only produced
imperfect, approximate fits”.

“Joint calibration seems out of the reach of continuous-time models
with continuous SPX paths”.

Investigating Guyon’s work one can realise the following : a necessary
condition for a continuous model to fit simultaneously SPX and VIX
smiles is the inversion of convex ordering between volatility and the
local volatility implied by option prices.

The intuition behind this condition could be reinterpreted as some
kind of strong Zumbach effect.

Natural for us to investigate the ability of super-Heston rough
volatility models to solve the joint calibration problem.
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Calibration for one day in history 19 May 2017

Parameters calibration with Deep Learning
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Figure – Implied volatility on SPX options for 19 May 2017. Blue and red points
are bid and ask of market implied volatilities. Model implied volatility smiles from
the model are in green. Strikes are in log-moneyness, maturity in year.
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Calibration for one day in history 19 May 2017

Parameters calibration with Deep Learning
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Figure – Implied volatility on VIX options for 19 May 2017. Blue and red points
are bid and ask of market implied volatilities. Model implied volatility smiles from
the model are in green. Strikes are in log-moneyness, maturity in year.
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Take home message for the joint calibration problem

Thanks to the quadratic rough Heston model

6 parameters.

VIX smiles in the bid-ask spread.

Global shape of the implied volatility surface of the SPX very well
reproduced

Very accurate SPX skews of orders -1.5 (shortest maturites), -1
(longer maturities), as for market data.
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Forecasting devices for next day realized volatility

Parametric methods

AR(p) :

σ̂t = α0 +

p∑
j=1

βjσt−j ,

HAR :

σ̂t = α0 + β1σt−1 + β2
1

5

5∑
j=1

σt−j + β3
1

22

22∑
j=1

σt−j ,

RFSV (d log σt = νdWH
t ) :

l̂og σt =
cos(Hπ)

π

∫ t−1

−∞

log σs
(t − s + 1)(t − s)H+1/2

ds ,

σ̂t = c exp(l̂og σt).
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Forecasting devices for daily realized volatility

A universal non-parametric method

LSTM recurrent neural network, with similar weights for each asset,
trained on a pooled dataset.

Inputs are xt = (σ2
t ) or xt = (σ2

t , rt), where rt is the daily return at
time t, with variable length for history.

Linear layer

LSTM LSTM LSTM

+

Figure – Structure of an LSTM cell (left) and simplified computational graph of
the network based on LSTM (right).
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Dataset

Description

5-minutes intraday prices of Russell 1000 and STOXX Europe 600
constituents, for years between 2010 and 2020.

862 names from the US market and 503 names from the European
market.

Scaling for each stock :

σt =
σt√
〈σ2

t 〉
, rt =

rt − 〈rt〉√
〈(rt − 〈rt〉)2〉

.

We focus mostly on the US market. The data of the European market
is used for an out-of-sample double-check.

We use the pooled dataset of 862 stocks over years 2010 - 2015 to
train the LSTM network. The period 2016 - 2020 is used for
out-of-sample evaluation.
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Evaluation metric

Relative mean square error

MSE(σ, σ̂) =
1

T

T∑
t=1

(σ̂t − σt)2,

where T is the number of trading days of the out-of-sample period.

We focus on each model’s relative performance compared to that of
the HAR model so that we compute instead (MSEm/MSEHAR), for
m ∈ {AR(22),RFSV, LSTM}.
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Capturing universality with LSTM
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Figure – Empirical distribution of the estimated Hurst parameters inside each
sector.
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Capturing universality with LSTM

Parametric vs non-parametric

AR(22) RFSV LSTMus
var LSTMus

ret

80%

85%
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Figure – Boxplot showing each model’s out-of-sample MSE relative to the HAR
model for the stocks of the US market.
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Capturing universality with LSTM

Parametric vs non-parametric

AR(22) underperforms the HAR model (overfitting).

RFSV outperforms the HAR model. It is remarkable as it involves
essentially no parameters (H = 0.055, c = 1.03).

LSTMus
var and LSTMus

ret outperform the other parametric models,
especially when we incorporate past returns data. This indicates that
the potential universal volatility formation mechanism across assets,
relating past volatilities and returns to current volatilities, allows us to
calibrate a universal model based on all assets, where the risk of
overfitting is reduced due to enriched realized scenarios.

We check for potential sector/stock (transfer learning)/market
specific or time dependent component in the volatility formation
process but consistently found that our universal network could not
be significantly improved.
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Uncovering the universal volatility formation process

A quadratic rough Heston inspired forecast

Following the idea on Zumbach effect in the QRH model, we propose
the following forecasting device :

σ̂2
t = a(Zt−1 − b)2 + c

with Zt =
∫ t
−∞

(t−s)H− 1
2

Γ(H+ 1
2

)
σsdWs .

We finally consider the following forecast

(1− λ)σ̂RFSV + λσ̂QRH ,

with H = 0.055, c = 1.03, a = 0.043, b = 0.74, c = 0.55.
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Uncovering the universal volatility formation process
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Figure – Out-of-sample performance of the forecast (1− λ)σ̂RFSV + λσ̂QRH

relative to LSTMeu
ret in the EU market.
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Conclusion

Universality of the volatility formation process

The universal LSTM network, trained on a pooled dataset of
hundreds of stocks, outperforms consistently the asset-specific
parametric models based on past volatilities.

Similar superior performances hold on assets that are not part of the
training set, even on those of a different market. Fine-tuning the
universal model with the data of each stock does not help improve
the performance.

These observations suggest the existence of a universal volatility
formation mechanism from a nonparametric perspective.

A simple combination of the RFSV and QRH forecasts with fixed
parameters perform similarly to our LSTM network.

From a parametric perspective, this shows that the main features of
this universal volatility formation process can be well described by the
rough volatility paradigm boosted with Zumbach effect.
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