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Théorie des ensembles aléatoires:
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The problem of hedging (or super-hedging) a European
claim

In discrete time t = 0, · · · ,T , let (Ω, (Ft)t=0,··· ,T ,P) be a
discrete-time complete stochastic basis. Consider a FT -measurable
random variable ξT we interpret as the payoff of some European
option, i.e. a financial contract delivering the wealth ξT at time T .

The general problem is to solve the following : find a self-financing
portfolio process (Vt)t=0,··· ,T such that VT ≥ ξT (or VT = ξT for
an exact replication). We say that the initial value V0 is a
super-hedging price.

We are interested in the infimum of the super-hedging prices.
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Portfolio processes and self-financing condition

Suppose that the financial market is composed of one bond of
(discounted) price S1 = 1 and d − 1 ≥ 1 risky assets of prices
(S i )i=2,··· ,d .

A financial strategy θ ∈ Rd is a stochastic process where θit is the
number of assets number i = 1, · · · , d held by a portfolio manager.
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Portfolio processes and self-financing condition : without
transaction costs

The liquidation value of the financial strategy θ ∈ Rd at time t is
given by

Lt = Lθt = θtSt =
d∑

i=1

θitS
i
t .

The portfolio-process is said self-financing if, for all t = 1, · · · ,T ,

θt−1St = θtSt

or equivalently ∆Lt = Lt − Lt−1 satisfies :

∆Lt = θt−1∆St , t = 1, · · · ,T .
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FTAP without transaction costs

Without transaction costs, the infimum super-replicating price of
an European option payoff ξT is characterized under a no-arbitrage
condition NA.

Definition

An arbitrage opportunity is a self-financing portfolio process
Vt = Lθt , t = 1, · · · ,T , such that V0 = 0, VT ≥ 0 a.s. and
P(VT > 0) > 0.

Definition

NA : there is no arbitrage opportunity.
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FTAP without transaction costs

Theorem ( Dalang–Morton–Willinger)

In discrete time t = 1, · · · ,T , with S1 = 1, NA holds if and only if
there exists Q ∼ P such that the (discounded) asset price
(St)t=1,··· ,T is a Q-martingale.

Theorem

With S1 = 1, let M(P) be the set of all risk-neutral probability
measures for S and let ξT be an European option payoff. Then, the
infimum super-replicating price of ξT is given by

V ∗0 = sup
Q∈M(P)

EQ(ξT ).
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Portfolio processes and self-financing condition : with
transaction costs

The general framework derived from the Kabanov model is the
following.
A portfolio process is expressed in physical units, i.e. Vt = θt and
the liquidation value Lt = LVt

t is not always simple to express.
We consider the associated set-valued stochastic process
(Gt)t=0,··· ,T in Rd defined as

Gt := {x ∈ Rd : Lt(x) ≥ 0}.

If ω 7→ Lt(ω, x) is Ft-measurable and x 7→ Lt(ω, x) is upper
semi-continuous, we may show that Gt(ω) is closed a.s.(ω) and
measurable, where the measurability is understood in the graph
sense :

graph(Gt) := {(ω, x) : x ∈ Gt(ω)} ∈ Ft × B(Rd), t = 1, · · · ,T .
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Portfolio processes and self-financing condition : with
transaction costs

Moreover, with e1 = (1, 0 · · · , 0) ∈ Rd , we have

Lt(z) := sup {α ∈ R : z − αe1 ∈ Gt} = max {α ∈ R : z − αe1 ∈ Gt} ,

i.e. Lt(z) is the maximum amount of cash α we may obtain when
we change z = (z − αe1) + αe1 into αe1.

Similarly, if we define Ct(z) = −Lt(−z), we obtain that

Ct(z) = inf{α ∈ R : αe1−z ∈ Gt} = min{α ∈ R : αe1−z ∈ Gt},

i.e. Ct(z) is the minimum cost α expressed in cash we need to buy
the financial position z ∈ Rd . Indeed, we write
αe1 = z + (αe1 − z).

E. Lépinette . 8 / 20



Portfolio processes and self-financing condition : with
transaction costs

Naturally, Ct(z) = Ct(St , z) depends on the available quantities
and prices for the risky assets, described by an exogenous
vector-valued Ft-measurable random variable St of Rm

+, m ≥ d ,
and on the quantities z ∈ Rd to be traded.

We generally suppose that m ≥ d as an asset may be described by
several prices and quantities offered by the market, e.g. bid and ask
prices, or several pair of bid and ask prices of an order book and
the associated quantities offered by the market.
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Portfolio processes and self-financing condition : with
transaction costs

The self-financing condition is :

∆Vt ∈ −Gt , t = 0, · · · ,T

i.e. Vt−1 = Vt + (−∆Vt) is such that Lt(−∆Vt) ≥ 0 so that we
may cancel the position −∆Vt and change Vt−1 into Vt for free.
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The super-hedging problem with proportional transaction
costs

Some no-arbitrage conditions are introduced for physical
self-financing portfolio processes in the spirit of NA, e.g. the robust
NAr condition, see the Kabanov model, and we have :

Theorem

NAr holds if and only if there exists strictly consistent price
systems (SCPS), i.e. martingales Z of Rd such that, for all
t = 0, · · · , d, Zt ∈ G ∗t = {y ∈ Rd : xy ≥ 0, ∀x ∈ Gt}.

Then, there exists a minimal price in cash for the European claim
ξT ∈ Rd given by

sup
Z∈SCPS,Z0e1=1

EZT ξT .
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The super-hedging problem for general transaction costs

In practice the transaction costs are not necessary linear, see the
case of order books or fixed costs.

The model is not linear so that we cannot expect dual elements
characterizing a no-arbitrage condition that allow us to dually
characterize the super-hedging prices.

Moreover, the no-arbitrage conditions we can imagine seem to be
rather artificial, see the case of the Kabanov model where several
distinct no-arbitrage exist and are difficult to compare.
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A new approach based on random set

A random set is a set-valued process (Gt)t=0,··· ,T such that Gt is a
mapping defined on Ω with values Gt(ω) which are subsets of Rd ,
d ≥ 1.

Definition

We say that the set-valued process (Gt)t=0,··· ,T is
graph-measurable with respect to the filtration (Ft)t=0,··· ,T is, for
all t ≤ T , we have :

graph(Gt) := {(ω, x) : x ∈ Gt(ω)} ∈ Ft × B(Rd).
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Conditioning the random sets : conditional core

In mathematical finance, we meet some problems such as :

Find the set of all Ft−1-measurable random variables Vt−1 such
that Vt−1 ∈ Γt a.s. where Γt is an Ft-graph-measurable random
set. We denote this family by L0(Γt ,Ft−1).

Example 1 : When d = 1, if Γt(ω) = [Vt(ω),∞) where Vt is
Ft-measurable, then Vt−1 ∈ L0(Γt ,Ft−1) iff Vt−1 ≥ Vt a.s..

We get that L0(Γt ,Ft−1) = L0(m(Γt |Ft−1),Ft−1) where

m(Γt |Ft−1) = [ess supFt−1
(Vt),∞).

Example 2 : When d = 1, if Γt(ω) = (−∞,Vt(ω)]) where Vt is
Ft-measurable, then Vt−1 ∈ L0(Γt ,Ft−1) iff Vt−1 ≤ Vt a.s..

We get that L0(Γt ,Ft−1) = L0(m(Γt |Ft−1),Ft−1) where

m(Γt |Ft−1) = (−∞, ess infFt−1(Vt)].
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Conditioning the random sets : conditional core

Theorem

Suppose that Γt is a Ft-graph-measurable random set which is a.s.
closed. Then, there exists a largest Ft−1-graph-measurable random
set, denoted by m(Γt |Ft−1) and called Ft−1-conditional core of Γt ,
such that m(Γt |Ft−1) ⊆ Γt a.s.. Moreover, we have
L0(Γt ,Ft−1) = L0(m(Γt |Ft−1),Ft−1).
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Conditioning the random sets : conditional closure and
interior

The conditional closure concept arises from the following problem :

Let ht−1(ω, x) be a random function such that
ω ∈ Ω 7→ ht−1(ω, x) is Ft−1-measurable and
x ∈ Rd 7→ ht−1(ω, x) ∈ R is l.s.c. a.s.(ω). With a complete
σ-algebra, we may say that ht−1 is a normal integrand. Then,
compute

ess supFt−1
{ht−1(ω,St(ω)) : St ∈ L0(Γt ,Ft)}

where Γt is a Ft-graph-measurable set-valued mapping .
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Conditioning the random sets : conditional closure and
interior

Theorem

Let Γt be a Ft-graph-measurable set-valued mapping. There exists
a largest Ft−1-graph-measurable set-valued mapping denoted by
O(Γt |Ft−1) and called conditional interior, such that O(Γt |Ft−1) is
a.s. open and O(Γt |Ft−1) ⊆ Γt a.s..

Corollary

Let Γt be a Ft-graph-measurable set-valued mapping. There exists
a smallest Ft−1-graph-measurable set-valued mapping denoted by
cl(Γt |Ft−1) and called conditional closure, such that cl(Γt |Ft−1) is
a.s. closed and Γt ⊆ cl(Γt |Ft−1) a.s..
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Application in random optimization

Theorem

Suppose that the random function ht−1(ω, x) is a Ft−1-normal
integrand. Let Γt be a Ft-graph-measurable set-valued mapping.
Then,

ess supFt−1
{ht−1(ω,St(ω)) : St ∈ L0(Γt ,Ft)} = sup

z∈cl(Γt |Ft−1)

ht−1(ω, z).
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Application in random optimization

Theorem

Suppose that the random function ht−1(ω, x) is a Ft−1-normal
integrand. Let St be a Ft-measurable random variable. Then,

ess supFt−1
ht−1(ω,St(ω)) = sup

z∈supp(St |Ft−1)

ht−1(ω, z).

where supp(St |Ft−1) is the conditional support of St knowing
Ft−1.
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Thank you for your attention !

Emmanuel Lépinette, Paris Dauphine University.
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