

On convergence of stochastic Mayer problems with transaction cost

Yuri Kabanov

Laboratoire de Mathématiques, Université de Franche-Comté

August, 2022

Basic model in discrete time Values versus physical units

There are *d* assets which we prefer to interpret as currencies. Their quotes are given in units of a certain *numéraire* which may not be a traded security. At time *t* the quotes are expressed by the vector of prices $S_t = (S_t^1, \ldots, S_t^d)$; its components are strictly positive. We assume that $S_0 = \mathbf{1} = (1, ..., 1)$.

The agent's positions can be described either by the vector of "physical" quantities $\hat{V}_t = (\hat{V}_t^1, \dots, \hat{V}_t^d)$ or by the vector $V = (V_t^1, \dots, V_t^d)$ of values invested in each asset; they are related as follows :

$$\widehat{V}_t^i = V_t^i / S_t^i, \quad i \leq d.$$

Formally, $\widehat{V}_t = \varphi_t V_t$, where

$$\varphi_t: (x^1,...,x^d) \mapsto (x^1/S^1_t,...,x^d/S^d_t).$$

Basic model in discrete time Dynamics

The portfolio evolution can be described by the initial condition $V_{-0} = v$ (the endowments of the agent when entering the market) and the increments at dates $t \ge 0$:

$$\Delta V_t^i = \widehat{V}_{t-1}^i \Delta S_t^i + \Delta B_t^i,$$

$$B_t^i := \sum_{j=1}^d L_t^{jj} - \sum_{j=1}^d (1 + \lambda_t^{ij}) L_t^{ij},$$

where $L_t^{ji} \in L^0(\mathbf{R}_+, \mathcal{F}_t)$ represents the accumulated net amount transferred from the position j to the position i at the date t; (ΔL_t^{ij}) , interpreted as an "order" matrix, is a control; (λ_t^{ij}) is the matrix of transaction costs coefficients : $\lambda_t^{ij} \in L^0(\mathbf{R}_+, \mathcal{F}_t)$, $\lambda^{ii} = 0$.

Dynamics in terms of numéraire

The portfolio dynamics can be described by a controlled linear difference equation :

$$\Delta V_t^i = V_{t-1}^i \Delta Y_t^i + \Delta B_t^i, \qquad i = 1, ..., d,$$

where Y^{i} , a "stochastic logarithm" of S^{i} , is given by follows :

$$\Delta Y_t^i = \frac{\Delta S_t^i}{S_{t-1}^i}, \quad Y_0^i = 1.$$

We can take ΔB_t as the control. Any $\Delta L_t \in L^0(\mathbf{M}^d_+, \mathcal{F}_t)$ defines $\Delta B_t \in L^0(-K_t, \mathcal{F}_t)$ where K_t is the solvency cone

$$\mathcal{K}_t := \Big\{ x \in \mathbf{R}^d : \ \exists \, a \in \mathbf{M}^d_+ \text{ such that } x^i \geq \sum_j [(1+\lambda^{ij}_t)a^{ij}-a^{ji}] \Big\}.$$

A measurable selection arguments show that any increment $\Delta B_t \in L^0(-K_t, \mathcal{F}_t)$ is generated by a certain (in general, not unique) order $\Delta L_t \in L^0(\mathbf{M}^d_+, \mathcal{F}_t)$.

Yuri Kabanov

Dynamics in physical units and the Cauchy formula

• The portfolio dynamics in physical units is surprisingly simple and, financially, obvious :

$$\Delta \widehat{V}_t^i = \frac{\Delta B_t^i}{S_t^i}, \qquad i = 1, ..., d.$$

• We can write this as :

$$\Delta \widehat{V}_t = \widehat{\Delta B}_t, \qquad -\widehat{\Delta B}_t \in \widehat{K}_t := \varphi_t M_t.$$

It follows that

$$V_t^i = S_t^i \widehat{V}_t^i = S_t^i \left(v^i + \sum_{s=0}^t \frac{\Delta B_s^i}{S_s^i} \right)$$

This is just the Cauchy formula for the solution of the non-homogeneous linear difference equation.

Yuri Kabanov

Ruin problems

Problem formulation

We are given

- a closed proper convex cone $K \subset \mathbb{R}^d$ such that int $K \supset \mathbb{R}^d_+ \setminus \{0\}$, - a probability measure μ on the space C^d of continuous functions x on [0, T] with values in $]0, \infty[^d$ and such that $x_0 = \mathbf{1} = (1, \ldots, 1)$ and $x_t^1 \equiv 1$, - a function $U : K \times C^d_{++}[0, T] \to \mathbb{R}_+$ such that for each f the function $v \mapsto U(v, f)$ is concave and increasing with respect to the componentwise partial ordering in \mathbb{R}^d (i.e., induced by the cone \mathbb{R}^d_+).

In our terminology model $\mathbf{M}(\mu)$ is a stochastic basis $\mathbb{B} = (\Omega, \mathcal{F}, \mathbf{F} = (\mathcal{F}_t)_{t \in [0, T]}, \mathbf{P})$ satisfying the usual conditions on which is defined a process S having the law μ and such that its natural filtration $\mathbf{F}^S = \mathbf{F}$. Fix a model $\mathbf{M} = \mathbf{M}(\mu)$. We associate with K and S the cone-valued processes $\widehat{K}_t := K/S_t$ and \widehat{K}_t^* . In a formal way $\widehat{K}_t := \varphi_t K$, where $\varphi_t : (x^1, ..., x^d) \mapsto (x^1/S_t^1, ..., x^d/S_t^d)$. Then $\widehat{K}_t^* = \varphi^{-1}K^*$. Let $B = (B_t)_{t \leq T}$ be an \mathbb{R}^d -valued adapted càdlàg process of bounded variation, $\operatorname{Var} B = \operatorname{Var}_t B$ be the sum of $\operatorname{Var} B^i$, and $\dot{B}_t := dB_t/d\operatorname{Var}_t B$ is an optional process. If $\dot{B}_t \in -K$ the process B is called *control* or *strategy*.

For a control *B* and $x \in K$ the processes $\widehat{V} = \widehat{V}^{x,B}$ has the components $\widehat{V}^i := x^i + (1/S^i) \cdot B^i$ and $V = \varphi^{-1}\widehat{V}$ with $V^i = S^i \widehat{V}^i = S^i (x^i + (1/S^i) \cdot B^i)$. If *S* is a semimartingale, the product formula implies that $V^i = x^i + V^i \cdot L^i + B^i$ where $L^i := 1 + (1/S^i) \cdot S^i$. Alternatively, $V^i = x^i + \widehat{V}^i \cdot S^i + B^i$.

The convex set $\mathcal{A}(x) = \mathcal{A}(x, \mathbf{M})$ of admissible strategies is formed by the controls B such that $\widehat{V}^{x,B} \in \widehat{K}$, i.e., $\widehat{V}_t^{x,B} \in \widehat{K}_t$, $t \in [0, T]$. Clearly, $\mathcal{A}(y) \supseteq \mathcal{A}(x)$ if $y - x \in K$, $\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x) \ \forall \lambda > 0$. The aim of the control is to minimize over $\mathcal{A}(x, \mathbf{M})$ the expected utility $\mathbf{E}[U(\hat{V}_T^{x,B}, S)]$, i.e. to find the Bellman function for the model $\mathbf{M} = \mathbf{M}(\mu)$

$$u(x, \mathbf{M}) := \sup_{B \in \mathcal{A}(x, \mathbf{M})} \mathbf{E}[U(\widehat{V}_T^{x, B}, S)].$$
(1)

Let $\mathbf{M}^n := \mathbf{M}(\mu^n)$ where μ^n to μ weakly.

The question is whether $u(x, \mathbf{M}^n)$ converges to $u(x, \mathbf{M})$?

Continuity

Assumption A.1. There are two continuous functions $m_i : [0,1] \to \mathbb{R}_+$ with $m_i(0) = 0$, i = 1, 2, and an integrable random variable $\zeta \ge 0$ such that for all $x \in K$ and $\alpha > 0$

$$U((1-\alpha)x,S) \ge (1-m_1(\alpha))U(x,S) - m_2(\alpha)\zeta.$$
(2)

Lemma

Suppose that A.1 holds. Then u is continuous on int K.

Approximations of strategies

Lemma

Let $\varepsilon \in]0,1]$ be such that $\mathcal{O}_{\varepsilon}(x) \subset \operatorname{int} K$. Let $B \in \mathcal{A}(x)$ and let B^m be the strategy defined as follows :

$$B^{m} := b_{0}I_{[t_{0},t_{1}[} + \sum_{k=1}^{m-1} (B_{t_{k}} - B_{t_{k-1}})I_{\Delta_{k}} + B_{T}I_{\{T\}}, \quad \Delta_{k} := [t_{k}, t_{k+1}[,$$

Then
(i)
$$|\widehat{V}_{T}^{x,B^{m}} - \widehat{V}_{T}^{x,B}| \to 0$$
 as $m \to \infty$;
(ii) there is an \mathbb{R}^{d}_{+} -valued adapted càdlàg process
 $\xi^{m} = \xi^{m}(x, S, B)$ with jumps only at the points t_{k} and such that
 $||\xi^{m}|| \to 0$ as $m \to \infty$ and

$$\widehat{V}_t^{x,B^m} + \xi_t^m \in \widehat{K}_t \quad \textit{for all } t \in [0,T].$$

Lemma

Let $\delta > 0$, $|\zeta|$ be an \mathbb{R}^k -valued r.v., and η be a $\sigma{\{\zeta\}}$ -measurable r.v. with values in a closed convex cone G. Then there is a bounded continuous function $f : \mathbb{R}^k \to G$ such that $\mathbf{E}[|f(\zeta) - \eta| \land 1] < \delta$.

Lemma

Let $\delta > 0$ and let η be a G-valued \mathcal{F}_t -measurable r.v. . Then there are $r_i \in [0, t], i = 1, ..., M$, and a bounded continuous function $f : (\mathbb{R}^p)^M \to G$ such that $\mathbf{E}[|f(Y_{r_1}, ..., Y_{r_M}) - \eta| \wedge 1] < \delta$.

Lemma

Let $\mathscr{B}_m(\mathbf{F})$ be the set of \mathbf{F} -adapted processes constant on each $[t_k, t_{k+1}[$ with $\Delta B_{t_k}^m \in L^0(-K, \mathcal{F}_{t_k})$. Let $\mathscr{B}_m^c(\mathbf{F})$ be its subset consisting of the processes such that $\Delta B_{t_k}^m$ are bounded continuous functions of values of the process Y at a finite subset of $[0, t_k]$. Then for any $B^m \in \mathscr{B}_m(\mathbf{F})$ there are $B^{m,l} \in \mathscr{B}_m^c(\mathbf{F})$ with $||B^{m,l} - B^m|| \to 0$ a.s. as $l \to \infty$.

Yuri Kabanov

Assumption A.2. The value function of the problem does not depend on the model : $u(x, \mathbf{M}^n) =: u^n(x), u(x, \mathbf{M}) =: u(x)$.

Proposition

Suppose that A.1 and A.2 hold. Let $x \in int K$. Then

 $u(x) \leq \liminf_{n} u^n(x).$

Assumption A.3. There exist a cone K' and cones K'^n , satisfying the following property : $K' \subset \operatorname{int} K' \cup \{0\}$ and $K' \subset \operatorname{int} K' \cup \{0\}$. There also exist probability measures $\mathbf{Q} \sim \mathbf{P}$, $\mathbf{Q}^n \sim \mathbf{P}^n$, $n \in \mathbb{N}$ and local \mathbf{Q}^n -martingales M_t^n with a local \mathbf{Q} -martingale M such that

$$|M_t - S_t| \in K'^*, \quad \mathbf{P}\text{-a.s.} \quad \forall t \in [0, T],$$
(3)
$$|M_t^n - S_t^n| \in K'^*_n, \quad \mathbf{P}^n\text{-a.s.} \quad \forall n \in \mathbb{N} \quad \forall t \in [0, T].$$
(4)

Assumption A.4. The sequence of probability measures \mathbf{P}^n is contiguous with respect to the sequence \mathbf{Q}^n , where \mathbf{Q}^n is taken form the previous assumption.

Theorem

Under A.1-A.4 $u^n(x) \rightarrow u(x)$.

Bayraktar, E., Dolinskyi, L., Dolinsky, Y. : Extended weak convergence and utility maximisation with proportional transaction costs. Finance and Stochastics, **24**, 4, 1013–1034 (2020)