
Determinantal Point Processes for Coresets
(Journées MAS, Rouen, August 2022)

Nicolas Tremblay, Simon Barthelmé, Pierre-Olivier Amblard
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Context and goal of coresets

Context

• (very) large n (size of dataset)

• a precise task at hand

Goal

• a coreset is a tiny (size indep./polylog of n) sample of the data for the task at hand

• a coreset has provable guarantees on the error made

• a coreset should be sampled faster than solving the task on the original data (!)

State-of-the-art1

• Verifying all 3 points is very challenging. The state-of-the-art usually comes with
• a provable algorithm but very expensive
• some work-arounds more affordable, still provable, but (much) less efficient
• some heuristics inspired by these provable algorithms

• coresets under research: deterministic, iid random, multi-task, streaming, ...

1Munteanu and Schwiegelshohn, Coresets-Methods and History: A Theoreticians Design Pattern. . . , KI, 2017
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A generic class of problems

• Consider a dataset X = (x1, . . . , xn), say: n points in dimension d .

• Let Θ be a parameter space and consider cost functions of the form:

L(X , θ) =
n∑

i=1

f (xi , θ)

where f : X ,Θ → R+.

• A classical ML objective: find

θ∗ = argmin
θ∈Θ

L(X , θ).
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Examples falling in this class of problems

Find θ∗ = argminθ∈Θ L(X , θ) where L(X , θ) =
∑n

i=1f (xi , θ), and f : X ,Θ → R+.

• k-means The k-means objective is to find k centroids {cℓ}ℓ=1,...,k in Rd such
that L (X , {cℓ}) =

∑
x∈X f (x , {cℓ}) is minimal, with

f (x , {cℓ}) = min
cℓ

||x − cℓ||2 (⩾ 0).

• Other examples: linear regression, logistic regression, k-median, low-rank approx.
of matrices, etc.
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Coresets: definition

• Consider {S, {ωs > 0}} a weighted sample of X and its associated estimated cost

L̂(S, θ) =
∑
s∈S

ωs f (s, θ)

• Definition (ϵ-coreset) A weighted sample S is an ϵ-coreset of X wrt L if:

(1− ϵ)L(X , θ) ⩽ L̂(S, θ) ⩽ (1 + ϵ)L(X , θ)

• Denote by θ̂∗ the argmin of L̂: θ̂∗ = argmin
θ∈Θ

L̂(S, θ).

• Why are coresets interesting?
If L has a clear global minimum (up to an ϵ factor) in θ∗, then θ̂∗ ≃ θ∗:

(1− ϵ)L(X , θ∗) ⩽ (1− ϵ)L(X , θ̂∗) ⩽ L̂(S, θ̂∗) ⩽ L̂(S, θ∗) ⩽ (1 + ϵ)L(X , θ∗)

⇓

(1− ϵ)L(X , θ∗) ⩽ L̂(S, θ̂∗) ⩽ (1 + ϵ)L(X , θ∗)
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Coresets: illustration on the 1-means problem

• Data X

• Cost function:

L(X , θ) =
n∑

i=1

∥xi − θ∥2

• Optimal θ:

θ∗ = argmin
θ∈Θ

L(X , θ)

• A weighted subset S
• Estimated cost function:

L̂(S, θ) =
∑
s∈S

ωs ∥s − θ∥2

• S is a ϵ-coreset if:

∀θ

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ ⩽ ϵ

• Estimated optimal θ:

θ̂∗ = argmin
θ∈Θ

L̂(S, θ)
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Sensitivity: a central object

• The sensitivity of a datapoint xi ∈ X with respect to f : X ,Θ → R+ is:

σi = max
θ∈Θ

f (xi , θ)
L(X , θ)

∈ [0, 1].

The total sensitivity is denoted S =
∑n

i=1 σi .

• In general, the sensitivity is unknown analytically. In the paper, we managed to
compute the analytic sensitivities for two simples cases: 1-means and linear
regression
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Random coresets

• Random context: suppose S is a random subset S ⊂ X (possibly with repetitions)
• Importance sampling notations:

• Define ϵi the random variable counting the number of times xi is in S
• To each element xi associate the weight ωi =

1
E(ϵi )

• One has:

L̂(S, θ) =
n∑

i=1

f (xi , θ)
ϵi

E(ϵi )
.

• By construction, L̂ is an unbiased estimator of L:

E
(
L̂(S, θ)

)
=

n∑
i=1

f (xi , θ) = L(X , θ).
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A classical iid coreset theorem1

• Let p ∈ [0, 1]n be a probability distribution over all datapoints X with pi the
probability of sampling xi and

∑
i pi = 1.

• Draw S: m iid samples with replacement according to p.
• Associate importance sampling weights to each element of S.
• Theorem The weighted sample S is a ϵ-coreset with high probability if:

m ⩾ O
(
d ′

ϵ2

(
max

i

σi

pi

)2
)

,

where d ′ is the pseudo-dimension of Θ (a generalization of the
Vapnik-Chervonenkis dimension).

• The optimal probability distribution minimizing the rhs is pi = σi/S.

• In this case, S is a ϵ-coreset with high probability if:

m ⩾ O
(
d ′S2

ϵ2

)
.

• In the k-means setting, S = O(k), d ′ = kd log k, yielding m ⩾ O
(

dk3 log k
ϵ2

)
.

1Langberg and Schulman, Universal ϵ-approximators for integrals, SIAM, 2010
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In practice?

• In practice, computing the sensitivity is either i/ impossible, or ii/ costs more
than solving the initial problem on the whole data set.

• To circumvent this problem, upper bounds (easier to estimate) are used1.

• Even then, finding algorithms that estimate useful upper bounds faster than the
time needed to solve the problem on the whole dataset, remains a challenge.

• N.B. Those are not the current best sensitivity-based iid theorems2

1see Feldman and Langberg, A unified framework for. . . , ACM symp. on Theory of computing, 2011
or Bachem et al., Practical Coreset Constructions for Machine Learning, Arxiv, 2017

2Braverman et al., New frameworks for offline and streaming coreset constructions, Arxiv, 2016

Nicolas Tremblay Determinantal Point Processes for Coresets Rouen, August 2022 12 / 22



Illustration and context Coresets: definition and iid theorem DPPs for Coresets Conclusion

In practice?

• In practice, computing the sensitivity is either i/ impossible, or ii/ costs more
than solving the initial problem on the whole data set.

• To circumvent this problem, upper bounds (easier to estimate) are used1.

• Even then, finding algorithms that estimate useful upper bounds faster than the
time needed to solve the problem on the whole dataset, remains a challenge.

• N.B. Those are not the current best sensitivity-based iid theorems2

1see Feldman and Langberg, A unified framework for. . . , ACM symp. on Theory of computing, 2011
or Bachem et al., Practical Coreset Constructions for Machine Learning, Arxiv, 2017

2Braverman et al., New frameworks for offline and streaming coreset constructions, Arxiv, 2016

Nicolas Tremblay Determinantal Point Processes for Coresets Rouen, August 2022 12 / 22



Illustration and context Coresets: definition and iid theorem DPPs for Coresets Conclusion

Illustration and context

Coresets: definition and iid theorem
Coresets
Sensitivities
A classical iid coreset result

DPPs for Coresets
Determinantal Point Processes
A theoretical point-of-view
A practical point-of-view

Conclusion

Nicolas Tremblay Determinantal Point Processes for Coresets Rouen, August 2022 13 / 22



Illustration and context Coresets: definition and iid theorem DPPs for Coresets Conclusion

DPPs in a nutshell

Determinantal point processes (or DPP) are:

• random processes that induce diversity.

• tractable.
• used for three main purposes:

i/ produce diverse samples of a large database
ii/ use as a tool in a variety of SP/ML contexts
iii/ characterize various observed phenomena.
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i/ This sample diversity can be directly useful12:

summary generation:

search engines / recommendation:

ii/ DPP samples can also be used as a tool in several SP/ML contexts:
• Monte Carlo integration
• Feature selection problems
• Coresets!
• etc.

1 left figure: from Kulesza and Taskar, DPPs for machine learning, Found. and Trends in ML, 2013
2right figure: from G. Gautier’s slides guilgautier.github.io/pdfs/GaBaVa17_slides.pdf
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Determinantal Point Processes: formal definition and notations

• Let L ∈ Rn×n be a positive semi-definite matrix, where Lij encodes some kind of

interaction between xi and xj ; e.g., the Gaussian kernel Lij = exp
−∥xi−xj∥2

2τ2 .

• Let m be a fixed integer and S a random subset of X of size m.

• We say that S is distributed according to a m-DPP, and write S ∼ mDPP(L), if:

P(S = S) =

{
0 if |S | ̸= m
1
Z
det(LS ) if |S | = m

where Z is a normalization constant.

• Denote by πi the inclusion probability of xi :

πi = P(xi ∈ S) =
1

Z

∑
S s.t. i∈S,|S|=m

det(LS ).

• By construction,
∑

i πi = m.
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1

Z

∑
S s.t. i∈S,|S|=m

det(LS ).

• By construction,
∑

i πi = m.
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Questions

Consider the same class of minimization problems as previously. Say S ∼ mDPP(L).

On the theoretical side (forgetting numerical efficiency for now):

• Under what conditions on L is S an ϵ-coreset with high probability?

• Can we do better than the iid case? (as strong coresets, but with smaller m?)

• What is the optimal L?

On the practical side (back IRL where we look for a practical implementation):

• In the iid world, the (sub-optimal but more realistic) strategies based on
upper-bounding the sensitivity have a cost linear in n. For instance in the
k-means context, they have a cost in O(nkd).

• Can we design a coreset algorithm based on DPPs that
• outperforms in practice its iid couterpart
• is not ridiculously longer than its iid counterpart?
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In theory: two theorems
A first theorem (#9 in the paper) states that if πi = m σi

σ
then we recover the iid

performance. Frustratingly, this thm

i/ only proves that DPPs do not fare worse than iid

ii/ only provides conditions on {πi}, nothing on higher order marginals
(concentration tools well adapted to this case are hard to come by)

A second theorem (#14 in the paper)

• Recall the ideal iid probability distribution: pi = σi/S.
• Consider a PSD matrix L verifying:

1. L is projective of rank m: L = UUt with U ∈ Rn×m and UtU = Im.
2. ∀i , Lii = mpi .

• Lemma [via Schur-Horn] Such a matrix necessarily exists. In general, there are
many degrees of freedom left to define U.

• Theorem [Variance reduction theorem] Sample Siid by drawing m samples iid
from p. Sample Sdpp ∼ mDPP(L). One has:

∀θ ∈ Θ Var
[
L̂(Sdpp, θ)

]
= Var

[
L̂(Siid, θ)

]
−

m − 1

m
Y

where Y ⩾ 0 depends on intricate frame properties of the lines of U.

⇒ Such a DPP necessarily provides a better coreset than its iid counterpart.

⇒ Finding the best projective DPP is however out of (our) reach theoretically.
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In practice: heuristics

Sampling from a DPP requires a worst-case O(n3) number of operations. Low-rank
DPPs have a more reasonable O(nm2) complexity. We propose two DPP heuristics
based on low-rank kernels:

Alg. 1: Approximate Gaussian kernel (with parameter τ > 0)
• Compute r ⩾ O(m) Random Fourier Features1 and obtain Ψ ∈ Rn×r s.t.

ΨΨt ∈ Rn×n approximates the Gaussian kernel
• Sample an m-DPP from L = ΨΨt

✓ This runs in O(nm2 + nmd)
× τ is a (annoying) hyper-parameter.

Alg. 2: Vandermonde kernel (here for d = 1, can be extended to d ⩾ 2)

• Compute V ∈ Rn×m the partial Vandermonde matrix Vij = x j−1
i• Sample an m-DPP from L = VVt (it is a projective DPP)

✓ This runs in O(nm2)
✓ No hyper-parameter tuning
× For d ⩾ 2, not all values of m are admissible.

• Advertisement: both kernels become equivalent in the flat limit (τ → ∞)3.

1Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008
3Barthelmé, Tremblay, Usevich, Amblard. Determinantal point processes in the flat limit, Bernoulli, 2022
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In practice: illustration on 1-means

• Data X , parameter θ

• Cost func.

L(X , θ) =
n∑

i=1

∥xi − θ∥2

Compare:

• uniform iid sampling

• sensitivity iid: ideal iid
sampling based on exact sensitivities

• m-DPP (heuristic) based on RFFs of
the Gaussian L-ensemble

• Proj Poly DPP (heuristic) based on
the partial Vandermonde matrix

Nicolas Tremblay Determinantal Point Processes for Coresets Rouen, August 2022 20 / 22



Illustration and context Coresets: definition and iid theorem DPPs for Coresets Conclusion

In practice: illustration on 1-means

• Data X , parameter θ

• Cost func.

L(X , θ) =
n∑

i=1

∥xi − θ∥2

Compare:

• uniform iid sampling

• sensitivity iid: ideal iid
sampling based on exact sensitivities

• m-DPP (heuristic) based on RFFs of
the Gaussian L-ensemble

• Proj Poly DPP (heuristic) based on
the partial Vandermonde matrix

Nicolas Tremblay Determinantal Point Processes for Coresets Rouen, August 2022 20 / 22



Illustration and context Coresets: definition and iid theorem DPPs for Coresets Conclusion

In practice: illustration on 1-means

• Data X , parameter θ

• Cost func.

L(X , θ) =
n∑

i=1

∥xi − θ∥2

Compare:

• uniform iid sampling

• sensitivity iid: ideal iid
sampling based on exact sensitivities

• m-DPP (heuristic) based on RFFs of
the Gaussian L-ensemble

• Proj Poly DPP (heuristic) based on
the partial Vandermonde matrix

Nicolas Tremblay Determinantal Point Processes for Coresets Rouen, August 2022 20 / 22



Illustration and context Coresets: definition and iid theorem DPPs for Coresets Conclusion

In practice: illustration on 1-means

• sensitivity iid: as before

• m-DPP (τ = 1): as before

• Proj Poly DPP: as before

• matched iid (τ = 1): iid version of
m-DPP (τ = 1)

• matched iid (Poly): iid version of
Proj Poly DPP

As the dimension d increases:

Figure: d = 2 Figure: d = 20
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Conclusion: take home messages

• This is exploratory work on the simple question: can DPPs help create better
coresets? If so, how?

• We have a few (mainly frustrating) theorems stating that DPPs do not fare worse
than its iid counterpart. The strongest result is the variance reduction theorem.

• We propose 2 DPP-based heuristics (= no provable guarantees), running in O(nm2)
• In the k-means and linear regression problems, these heuristics outperform

(= better coresets for a similar computation time) the iid scheme especially:
• for small m : to keep the O(nm2) DPP sampling cost under control
• and small d : to keep the DPP’s repulsiveness significant.

• For (many) more theoretical and experimental details, the paper is available at:
http://jmlr.org/papers/volume20/18-167/18-167.pdf

• The DPP4Coresets Julia toolbox is available at:
https://gricad-gitlab.univ-grenoble-alpes.fr/tremblan/dpp4coresets.jl

or on my website.
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