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The background: device-to-device (D2D) communications

How does it work? D2D technology consists of direct
communication between two users equipments (like smartphones),
the signal not needing to go through the nearest base station.

What does it change? Since any user can theoretically play the
role of a relay, in cities—where the density of users is very high—
operators could reduce their infrastructure costs. Or it could just
ease the uberisation of the sector.

Question: is a fully functional large-scale D2D network
feasible?



Continuum percolation
A wireless network can be modelled by a graph.

Vertices=equipments. Edges=possible connections between them.
The Gilbert’s model (1961): nodes randomly scattered

through the plane, distributed as a PPP of intensity λ > 0. Two
nodes are connected if they are at distance ≤ R (for some
fixed R > 0).
A phase transition occurs like in discrete percolation models:
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A percolation model for D2D networks in urban areas
Quentin Le Gall and his coauthors recently designed a model to
test the scenario of a large-scale D2D network.

1. a Poisson–Voronoi tessellation for the random street system;
2. users randomly scattered on it: PPP of intensity λ > 0;
3. users/relays independently installed at crossroads, with

common probability p ∈ [0, 1];
4. Line-of-sight propagation: two nodes on the same street are

linked by an edge if they are at distance ≤ R.
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Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.

Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

I For p < p∗ ∈ (0, 1), the graph never percolates;
I for p and R large enough, the graph always percolates;
I finally, for some values of p and R, the graph percolates iff

the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

I For p < p∗ ∈ (0, 1), the graph never percolates;
I for p and R large enough, the graph always percolates;
I finally, for some values of p and R, the graph percolates iff

the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

I For p < p∗ ∈ (0, 1), the graph never percolates;
I for p and R large enough, the graph always percolates;
I finally, for some values of p and R, the graph percolates iff

the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

I For p < p∗ ∈ (0, 1), the graph never percolates;

I for p and R large enough, the graph always percolates;
I finally, for some values of p and R, the graph percolates iff

the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

p∗

λc(p,R) = +∞

I For p < p∗ ∈ (0, 1), the graph never percolates;

I for p and R large enough, the graph always percolates;
I finally, for some values of p and R, the graph percolates iff

the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

p∗

λc(p,R) = +∞

λc(p,R) = +∞?

I For p < p∗ ∈ (0, 1), the graph never percolates;

I for p and R large enough, the graph always percolates;
I finally, for some values of p and R, the graph percolates iff

the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

p∗

λc(p,R) = +∞

λc(p,R) = +∞?

I For p < p∗ ∈ (0, 1), the graph never percolates;
I for p and R large enough, the graph always percolates;

I finally, for some values of p and R, the graph percolates iff
the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

p∗

λc(p,R) = +∞

λc(p,R) = +∞?

λc(p,R) = 0

I For p < p∗ ∈ (0, 1), the graph never percolates;
I for p and R large enough, the graph always percolates;

I finally, for some values of p and R, the graph percolates iff
the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

p∗

λc(p,R) = +∞

λc(p,R) = +∞?

λc(p,R) = 0

I For p < p∗ ∈ (0, 1), the graph never percolates;
I for p and R large enough, the graph always percolates;

I finally, for some values of p and R, the graph percolates iff
the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

p∗

λc(p,R) = +∞

λc(p,R) = +∞?

λc(p,R) = 0

No infinite component when λ = 0

I For p < p∗ ∈ (0, 1), the graph never percolates;
I for p and R large enough, the graph always percolates;

I finally, for some values of p and R, the graph percolates iff
the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Phase transitions of the model
Le Gall et al. proved the existence of several percolation regimes.
Set λc(p,R) = inf {λ | Pp,R,λ(∃ an ∞ component) > 0}.

p

R0

1

p∗

λc(p,R) = +∞

λc(p,R) = +∞?

λc(p,R) = 0

No infinite component when λ = 0

0 < λc(p,R) < +∞

I For p < p∗ ∈ (0, 1), the graph never percolates;
I for p and R large enough, the graph always percolates;
I finally, for some values of p and R, the graph percolates iff

the density of users is large enough, i.e. 0 < λc(p,R) < +∞.



Delaunay triangulations
With David Coupier and Benoît Henry, we are able to improve the
latter results for Delaunay triangulations as alternative street
system.

Basically thanks to strong symmetries of the maps.
Site percolation process on it is well understood.
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I for any R > 0, there is at most one p such that λc(p,R) = 0
but the graph does not percolate for λ = 0.



Phase transitions on a Delaunay triangulation
p

R0

1

1/2

λc(p,R) = +∞

λc(p,R) = +∞?

λc(p,R) = 0

No infinite component when λ = 0

0 < λc(p,R) < +∞

I For any p > 1/2 and range R > 0, the graph percolates
when λ is large enough;

I for any p > 1/2, there exists R large enough such that the
graph always percolates;

I for any R > 0, there is at most one p such that λc(p,R) = 0
but the graph does not percolate for λ = 0.



Phase transitions on a Delaunay triangulation
p

R0

1

1/2

λc(p,R) = +∞

λc(p,R) = 0

No infinite component when λ = 0

0 < λc(p,R) < +∞

I For any p > 1/2 and range R > 0, the graph percolates
when λ is large enough;

I for any p > 1/2, there exists R large enough such that the
graph always percolates;

I for any R > 0, there is at most one p such that λc(p,R) = 0
but the graph does not percolate for λ = 0.



Phase transitions on a Delaunay triangulation
p

R0

1

1/2

λc(p,R) = +∞

λc(p,R) = 0

No infinite component when λ = 0

0 < λc(p,R) < +∞

I For any p > 1/2 and range R > 0, the graph percolates
when λ is large enough;

I for any p > 1/2, there exists R large enough such that the
graph always percolates;

I for any R > 0, there is at most one p such that λc(p,R) = 0
but the graph does not percolate for λ = 0.



Phase transitions on a Delaunay triangulation
p

R0

1

1/2

λc(p,R) = +∞

λc(p,R) = 0

No infinite component when λ = 0

0 < λc(p,R) < +∞

I For any p > 1/2 and range R > 0, the graph percolates
when λ is large enough;

I for any p > 1/2, there exists R large enough such that the
graph always percolates;

I for any R > 0, there is at most one p such that λc(p,R) = 0
but the graph does not percolate for λ = 0.



Phase transitions on a Delaunay triangulation
p

R0

1

1/2

λc(p,R) = +∞

λc(p,R) = 0

No infinite component when λ = 0

0 < λc(p,R) < +∞

I For any p > 1/2 and range R > 0, the graph percolates
when λ is large enough;

I for any p > 1/2, there exists R large enough such that the
graph always percolates;

I for any R > 0, there is at most one p such that λc(p,R) = 0
but the graph does not percolate for λ = 0.



Phase transitions on a Delaunay triangulation
p

R0

1

1/2

λc(p,R) = +∞

λc(p,R) = 0

0 < λc(p,R) < +∞

I For any p > 1/2 and range R > 0, the graph percolates
when λ is large enough;

I for any p > 1/2, there exists R large enough such that the
graph always percolates;

I for any R > 0, there is at most one p such that λc(p,R) = 0
but the graph does not percolate for λ = 0.



Thank you for your attention!


