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Introduction

An exhaustive state of the art of statistics for stochastic processes is impossible.

Many fields use observations collected over time (or according to a position
variable).

Due to their structure and properties, stochastic processes are relevant models to
account for :

mechanistic aspects,
intrisic stochasticity in the dynamics,
dependence between consecutive observations (e.g. Markovian processes),
. . .

. . . make it possible to distinguish between the stochastic modeling of the studied
phenomenon and the statistical modeling of the available observations :

hidden states
aggregation of data
measurement errors
. . .
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Ex. 1 : Hidden Markov Models (HMM) in pharmacology

Evolution of the number of daily seizures over time in epileptic patients [D. et al., 2012]

What clinicians need from a model :
describe the mechanism behind the succession of seizures over time
describe the effects of the drug on the progression of symptoms
. . .
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Ex. 1 : HMM in pharmacology

Aspects that the model needs to consider ([D. et al., 2012], [Altman R. M., 2007], . . . ):

Stochastic dynamic model

The existence of different health states with different levels of symptoms is a
reasonable assumption.

Patients would tend to stay in the same state for several consecutive days.

Available observations :

The states are not observed, only the daily numbers of seizures are.
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Ex. 1 : HMM in pharmacology

General model structure
(zj)j=1,...,n : sequence of states, Markov chain

L(zj |zj−1, . . . , z1) = L(zj |zj−1) (1)

(yj)j=1,...,n : sequence of observations, defined
through their conditional distributions

L(yj |zj = s) , s = 1, . . . , S (2)

Appropriate parameterization of (1) and (2) is likely to provide information about
treatment effects
ex. :

logit(p2,1) = θ1 + θ2 Dose
E(yij |zij = s) = θ3,s + θ4,s(1− 2−(tij−θ5,s )/θ6,s )
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Ex. 2 : pharmacokinetic (PK) studies

Evolution of the concentration of a drug in
blood plasma over time

What clinicians need from a model :
describe the mechanisms of drug diffusion in the body
estimate the values of key pharmacokinetic parameters (and the effects of covariates
on these values)
. . .
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Ex. 2 : standard compartmental models in PK

Noisy observations of ODEs (ordinary differential equations)

dZ(t) = b(Z(t), θ)dt
yj = g(Z(tj), θ) + γ2(θ)εj , εj ∼

i.i.d.
N (0, 1)

Ex. (intraveinous bolus injection)

dC(t) = −kC(t)dt
yj = C(tj) + γ2εj , εj ∼

i.i.d.
N (0, 1) Input k
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Ex. 2 : using SDEs in PK

Kinetics are inherently irregular : ��0DE → SDE (stochastic differential equation) [Overgaard

R. V. et al., 2005], [Tornoe C. W. et al., 2005]

dZ(t) = b(Z(t), θ)dt +σ(Z(t), θ)dW (t)
yj = g(Z(tj), θ) + γ2(θ)εj , εj ∼

i.i.d.
N (0, 1)

Ex. (intraveinous bolus injection)
D. and Lavielle [2013]

dk(t)=−α(k(t)− k0)dt + σ
√

k(t)dW (t)
dC(t) = −k(t)C(t)dt

yj = C(tj) + γ2εj , εj ∼
i.i.d.
N (0, 1)

Input k
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Ex. 2 : using SDEs in PK

Effects of accounting for kinetics irregularities in the model through SDEs

1) 2)
dk(t)=−α(k(t)− k0)dt + σ

√
k(t)dW (t)

dC(t) = −kC(t)dt + σ(C(t))dW (t) dC(t) = −k(t)C(t)dt
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Remarks

Stochastic processes are used in many other areas : Hawkes processes (seismology,
neuroscience, . . . ), branching processes (population evolution, spread of epidemics,
. . . ), point processes, Levy processes, . . .

Advantage : large variety stochastic model

nature of the studied phenomena (discrete/continuous values,
discrete/continuous time, . . .)
specific assumptions on the temporal dependency between observations, the
distribution of consecutive events, . . .

Drawback : sample paths are rarely completely observed (hidden states, data
aggregation, measurement errors, . . . )
↪→ require accurate statistical studies

2 examples above : several trajectories with extrinsic variability to be treated
simultaneously but this is not the usual framework
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Useful statistical issues for applications of stochastic processes

1) Estimation (either parametric or nonparametric)
a. computational developments when exact computation of estimators is costly or not

feasible
b. theoretical study of estimators

2) Reconstruction of hidden states from observations (prediction)
↪→ characterization of the conditional distribution of the states given the observations

L(Zt |Yt−1, . . . ,Y0) filtering
L(Zt |YT , . . . ,Y0) smoothing

(e.g. Kalman methods and their derivations, particle methods, . . . )

3) Model selection
(e.g. selecting the number of states in a HMM)
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General setting : mixed-effects models

Data :
repeated measurements from several subjects
similarly-shaped individual profiles
inter-individual differences

Mixed effects models : hierarchical models s.t. [Pinheiro J. C. and Bates D. M., 2000],
[Lavielle M., 2014]

1 1st level : description of the intra-individual variability

Yi ∼
ind.

p(·|ψi) , i = 1, . . . ,N

yi = (yi,1, . . . , yi,ni )> : observations for subject i
ψi ∈ Rd : individual parameters

2 2nd level : description of the inter-individual variability

ψi ∼
ind.

p(·;Ci , θ)

Ci ∈ Rq : covariates for individual i
θ : population parameter
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General setting : SDEs with mixed-effects

SDEs with mixed-effects :

dZi(t) = b(Zi(t), ψi)dt +σ(Zi(t), ψi)dWi(t)
yij = g(Zi(tij), ψi) + γ2(ψi)εij , εij ∼

i.i.d.
N (0, 1)

ψi ∼
i.i.d.

g(·, θ)

Maximum likelihood estimation : θ̂N = argmax
θ∈Θ

LN(θ)

→ difficult to compute

→ likelihood generally non explicit

LN(θ) =
N∏
i=1

∫
p(Yi |ψi)p(ψi ; θ)dψi

where

p(Yi |ψi) =
ni∏
j=1

∫
p(yij |Zi(tij), ψi)p(Zi(tij)|yi,j−1, . . . , yi,1, ψi)dZi(tij)

→ Questions : How to compute θ̂N and what can we say about the properties of θ̂N?
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SAEM and MCMC-SAEM algorithms

SAEM [Delyon et al, 1999] Iteration m > 0 :

S step(Simulation): simulation of φ(m) according to p( φ︸︷︷︸
latent

| Y︸︷︷︸
obs.

, θm−1)

SA step (Stochastic approximation):

Qm(θ) = Qm−1(θ) + γm
(
log p(Y , φ(m); θ)− Qm−1(θ)

)

M step(Maximisation):
θ̂m = argmax

θ∈Θ
Qm(θ)

where (γm)m≥1 is a sequence of decreasing step sizes, s.t. γ1 = 1 and lim
m→∞

γm = 0.

SAEM-MCMC [Kuhn et Lavielle, 2005] : coupling S step with MCMC procedures
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Extension of the S step of SAEM-MCMC [D. and Lavielle, 2013]

SDEs with mixed effects
→ two groups of latent variables φ = ((ψi ,Zi), i = 1, . . . ,N)

S step:
simulation of (ψi ,Zi)(c) ∼ p(ψi ,Zi |Yi ; θ) is difficult and costly [Donnet S. and Samson
A., 2014]

marginalization w.r.t. Zi

simulation of ψi ∼ p(ψi |Yi ; θ) : Metropolis-Hastings
evaluation of the acceptance rate ↔ p(ψi |Yi ; θ) ∝ p(Yi |ψi)p(ψi ; θ)
(extended) Kalman filter to evaluate

p(Yi |ψi) =
ni∏
j=1

∫
p(yij |Zi(tij), ψi)p(Zi(tij)|yi,j−1, . . . , yi,1, ψi)dZi(tij)

Advantage : reduced computational cost
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Real data analysis [D. and Lavielle, 2013]

Ci(t) = Di

Vi

ki
ki − kei(t) [exp(−kei(t) t)− exp(−ki t)]

yij = Ci(t) + εij , εij ∼
i.i.d.
N (0, σ2)
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Asymptotic studies of estimators

Need for simplified frameworks

1 d Zi (t) = φ>i︸︷︷︸
φi ∼ N (µ,Ω)

b(Zi (t))dt + γ−1/2σ(Zi (t)) dWi (t), i = 1, . . . ,N

2 d Zi (t) = ϕ>b(Zi (t))dt + Γ−1/2i︸ ︷︷ ︸
Γi ∼ Γ(a, λ)

σ(Zi (t)) dWi (t)

3 d Zi (t) = φ>i︸︷︷︸
φi |Γi = γ
∼ N (µ, γ−1Ω)

b(Zi (t))dt + Γ−1/2i︸ ︷︷ ︸
Γi ∼ Γ(a, λ)

σ(Zi (t)) dWi (t)

Observations :
observations in discrete time and without noise : yij = Zi(tj), j = 0, . . . , n
regularly spaced observations (∆) on [0,T ] where T <∞ (i.e. n = T/∆, tj = j∆)
N →∞, ∆→ 0 (n→∞)

⇒ Contrasts derived from the Euler scheme of the N trajectories are explicit.
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Summary of results [D. et al., 2017, 2018]

Results
Under suitable assumptions on the processes :

consistency and asymptotic normality when N, n→∞, N/n→ 0
convergence rate

√
Nn : fixed effect in the diffusion coefficient (γ)

convergence rate
√
N : all other parameters

Remarks :
If N = 1, the observation time interval [0;T ] is fixed, ∆→ 0 (n→∞) only γ can
be estimated consistently and the rate of convergence of the estimator is

√
n.

Links with asymptotic results in [Nie L. and Yang M., 2005], [Nie L., 2006, 2007] in
the standard nonlinear mixed-effects models framework.
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Closing words

Stochastic processes : useful models for many applications where data are collected
over time
Making statistics for such models is complex (non i.i.d. setting, . . . )
Still an active research field
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