Full inference
for the anisotropic fractional Brownian field.

Frédéric RICHARD,
joint work with Paul ESCANDE.

Institute of Mathematics of Marseille, Aix-Marseille University.

Journées MAS (SMAI), session Géométrie stochastique,
Rouen, 29-31 August 2022.
The anisotropic fractional Brownian field.

- Non-stationary Gaussian random field Z, with stationary increments.
- Characterized by a semi-variogram of the form

$$v_0(h; \tau, \beta) = \frac{1}{2} \mathbb{E} \left((Z(x + h) - Z(x))^2 \right),$$

$$= \frac{1}{2} \int_{\mathbb{R}^2} \left| 1 - e^{i\langle h, w \rangle} \right|^2 \tau(w) |w|^{-2\beta(w) - d} \, dw.$$

- τ and β are two non-negative homogeneous functions, called the topothesy and Hurst functions.

$$\tau(w) = \tau \left(\frac{w}{|w|} \right) \quad \text{and} \quad \beta(w) = \beta \left(\frac{w}{|w|} \right).$$

- Issue: estimate these functional parameters of the field.

[A. Bonami & A. Estrade, J Fourier Anal Appl, 2003]
A model for image micro-textures.
Texture classification.

Microscopic images of photographic films (source: Paul Messier, MoMA, NY).

Hurst index: \(H = \arg \min_s \{ \beta(s), \tau(s) > 0 \} \).

Asymptotic topothesy: \(\tau^*(s) = \tau(s) \) if \(\beta(s) = H \) and 0 otherwise.

Anisotropy index: \(I = \frac{\sqrt{\int (\tau^*(s) - \overline{\tau}^*)^2 ds}}{\overline{\tau}^*}, \) with \(\overline{\tau}^* = \int \tau^*(s) ds \).

[FR, Stat & Comput, 2018; Spatial Stat, 2017].
Texture segmentation.

Mouse biphoton microscopy (source: F. Debarbieux, La Timone, Marseille):
Localisation of neurons (anisotropic patterns) and inflammatory cells (isotropic patterns).

Framework of anisotropic multifractional Brownian field:
(Extension of the mfbf of [Benassi, Jaffard, Roux, 1997; Peltier & Vehel, 1996])

\[
Z(x) = \int_{\mathbb{R}^2} \left(e^{i\langle x, w \rangle} - 1 \right) \sqrt{\tau_x(w)} |x|^{-\beta_x(w)-1} d\hat{W}(w)
\]

Texture simulation.

PyAFBF (https://fjprichard.github.io/PyAFBF/), [FR, JOSS, 2022].

- A Python library for sampling image textures from the anisotropic fractional Brownian field.
- Motivation: Infer models from examples to simulate realistic textures.
Estimation of the Hurst function.

Let Z be an AFBF of hurst function β.

- Window Radon transforms $R(Z)(\theta)$ of Z parallel to a direction θ is a fractional Brownian motion of index $\beta(\theta^\perp) + \frac{1}{2}$.
- Estimate $\beta(\theta^\perp)$ by inferring the Hurst index of $R(Z)(\theta)$.
- In practice, discretization issues that restrict the estimation to the horizontal and vertical directions.
- Inaccurate, especially for low values of the Hurst parameters.

[H. Biermé, FR, ESAIM PS, 2008].
Estimation of the asymptotic topothesy.

- \(Z^I \): field observed on a grid \(\left\{ \left(\frac{i}{I}, \frac{j}{I} \right) \in [1, I]^2 \right\} \).

- Increments \(V_{s,\varphi}^I = \nu_{s,\varphi} \ast Z^I \) at scale \(s \) in direction \(\varphi \).

- Quadratic variations: \(W_{s,\varphi}^N = \frac{1}{N_e} \sum m(V_{s,\varphi}^N[m])^2 \).

- Breuer-Major Theorem \(\rightarrow \) asymptotic anormality (as \(I \) tends to \(+\infty \)):
 \[
 \log(W_{s,\varphi}^I) = H \log(s^2) + \log(\gamma_{H,\tau^*}(\varphi)) + \epsilon_u^I,
 \]
 where
 \[
 \gamma_{H,\tau^*}(\varphi) = \tau^* \otimes \Gamma_H(\varphi) \text{ with } \Gamma_H(\varphi) = \int_{\mathbb{R}^+} |\hat{\nu}(\rho \varphi)|^2 \rho^{-2H-1} d\rho.
 \]

- An inverse problem: Minimize
 \[
 J(\tau) = \sum_{\varphi} (\tilde{\gamma}(\varphi) - \tilde{\Gamma}_H \otimes \tau(\varphi))^2 + \lambda |\tau|_W^2.
 \]
 where \(\lambda > 0 \) and \(|\cdot|_W \) is a Sobolev norm.
A turning-band approach.

- Semi-variogram of an AFBF (in polar coordinates):
 \[v_0(h; \tau, \beta) = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \nu(\theta) \tau(\theta) |\langle h, u(\theta) \rangle|^{2\beta(\theta)} d\theta, \]
 with \(u(\theta) = (\cos \theta, \sin \theta) \) and a constant \(\nu_H \).

- Can be approximated by a semi-variogram of the form
 \[v(x; \tau, \beta) = \frac{1}{2} \sum_{m=1}^{M} \lambda_m \tilde{\tau}(\theta_m) |\langle x, u(\theta_m) \rangle|^{2\beta(\theta_m)}, \]
 for some appropriate angles \(\theta_m \) in \([-\pi/2, \pi/2]\) and positive weights \(\lambda_m \).

- Corresponds to the semi-variogram of a turning-band field
 \[Z_M(x) = \sum_{m=1}^{M} \sqrt{\lambda_m \tilde{\tau}(\theta_m)} Y_m(\langle x, u(\theta_m) \rangle), \]
 \(Y_m \) being a fractional Brownian field of Hurst index \(\beta(\theta_m) \).

Inference setting.

- $Y = (Y[i])_i$: image at some grid points $i \in [1, I]^2$,
- Z: AFBF with unknown semi-variogram $v(\cdot; \tau, \beta)$,
- $W = (W[i])_i$: centered Gaussian noise of variance τ_0.
- Observation model:
 \[
 Y[i] = Z \left(\frac{i}{I} \right) + W[i], \; i \in [1, I]^2.
 \]
- Theoretical semi-variogram of Y:
 \[
 w(x; \tau, \beta) = \tau_0 + v(x; \tau, \beta)
 \]
- Empirical semi-variogram of Y at some lags $(x_n)_n$:
 \[
 \hat{w}_n = \frac{1}{N_n} \sum_i (Y[i + x_n] - Y[i])^2.
 \]
The inverse problem

- Minimize the least-square criterion

\[h(\tau, \beta) = \frac{1}{2} \sum_{n=1}^{N} (w(x_n; \tau, \beta) - \hat{w}_n)^2. \]

- Function representations:

\[\tau(\theta) = \sum_{j=1}^{J} \tau_j T_j(\theta) \quad \text{and} \quad \beta(\theta) = \sum_{k=1}^{K} \beta_k B_k(\theta). \]

- \(h \) as a non-linear separable least square criterion

\[h(\tau, \beta) = \frac{1}{2} \sum_{n=1}^{N} (F_n(\beta) \tau - \hat{w}_n)^2, \]

\(F_n \) being a vector-valued function with components

\[F_n(\beta)_{nj} = v(x_n; T_j, \beta) \text{ for } j \neq 0 \text{ and } F(\beta)_{n0} = 1. \]
A variable projection method.

VARPRO [Golub and Peyrera, 2003] :

- Define

 \[g(\beta) = h(\tau^*(\beta), \beta), \]

 where, for a fixed \(\beta \), \(\tau^*(\beta) \in \arg \min_{\tau} h(\tau, \beta) \).

- Minimize \(g \) instead of \(h \) (with a Gauss-Newton method).

Our implementation :

- Multi-grid approach : successive minimization in embedded finite dimensional subspaces of piecewise constant functions.

- Definition of a "non-redundant" set of lags \((x_n) \) to avoid problem to be ill-posed.

- Levenberg-Marquardt to find minimizers of \(h \) w.r.t. \(\tau \) and \(g \).

 \texttt{lsq_linear}, \texttt{least_square} of package \textit{Optimize} of Python library \textit{Scipy}.

- Constraints to ensure that \(\beta \in (0, 1) \) and \(\tau \geq 0 \).
Numerical study.

- Radial precision: maximal size of the intervals on which τ and β are piecewise constant.
- Error: mean absolute difference between the estimated and true values of the constants of β.
- Number of experiments: 100.
- Mean computational times (8 to 31 seconds).
Estimating models from textures.
Sampling realistic textures.

Real

Synthetic 1

Synthetic 2
contact: frederic.richard@univ-amu.fr, https://github.com/fjprichard

F. Richard, Analysis of anisotropic Brownian textures and application to lesion detection in mammograms, Procedia Environmental Sciences, 27:16-20, 2015.

