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Definitions and Aims

data: (X;, V)V, "X (X, V) e X xR

functions class: F C Ly(X, ) where X ~ g

oracle: f* € argmingr E(Y — f(X))?

4. regularization function: ||| : span(F) — R (any norm)

w =

Statistical goal: Estimate f* in Ly(1) knowing that f* has some
structure “related to ||| with the Regularized Empirical risk
minimization (RERM):

N
2 1
f € argmin | — E (Y: — F(X))2 + X ||| A : regularization parameter
fer \ N =

Aim of the talk: Find the key properties of F and |[|-[| which drives the
statistical performances of f.
Aim of the talk: Only two parameters drive everything:
1. the size of the subdifferential of ||-|| around 7*
2. the local Gaussian mean widths of the family of sub-models
f*+pB:={feF:|f-r*<p}hp>0.
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Examples

LASSO:
1. F={(-,t):te R}
2 | <'7 t>H = [tll
SLOPE:

1 F={(,t):te R}
2. |0 = ltllsope = g v/Tog(ed/j)t} where tf > - >t}

Nuclear norm regularization:
1 F={(A): AcR™T}

2. [ = 11Alls, = Y- ai(A)
SVM:
1. F = RKHS

21 = 1l rcras
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Subdifferential of ||| at f*
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Size of the subdifferential of ||-||
The subdifferential of ||| in f:

Q1[I (f) == {g € span(F) : [|f + h|| = ||f]| + (g, h),Vh € span(F)}

We have

= { e @I e

where for ||f||" = sup‘|g||§1<f,g>,

S*={f:|f|" =1} and B* = {f: ||f||" <1}
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Size of the subdifferential of |||

Subdifferential are large sets at points where [|-|| is not differentiable

Examples:
1 1 1 1
0 X2 1 1
ol | - =41 " i<ty e =4 -
0 Xd 1 1

6/62



Size of the subdifferential of |||

LASSO:
0 ||-|l; (t) is large when t is sparse

SLOPE:
O ||l s; ope (t) is large when t is sparse

Nuclear norm:

O|lls, (A) is large when A is low rank

SVM:
O ||| gxrss (f) is never large except when f =0

£1,SLOPE, S are sparsity inducing norms: they promotes some “hidden”
low dimensional structure

RKHS: no sparsity inducing power but some smoothing property.
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Local Gaussian mean width of
f*+pB:={feF:||[f"—f|<phhp>0
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Definition

Let H C Lp(p) and denote by (Gp)pen the canonical Gaussian
process over H. The Gaussian mean width of H is

*(H) =Esup Gy
heH

Ex.: H={(,t):t € Bf} then for h= (-, 1),

d
Gh=G =) gitj=(G,t)
j=1

where g1,...,84 NS N(0,1), G =(g1,..-,84)" and

C*(H)=¢*(B{) =E sup (G, t) =E||G||, ~ \/log(ed)

teBy
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1. H= {<, t> te BSLOPE} where
d
Bsiore = {t € R : ||t]|s,0pe <1} and |[t]ls,0pe = Z V Iog(ed/j)tf,
=1

then for h = (-, t), G, = Gy = (G, t) and ¢*(H) = £*(Bs.ope) ~ 1.

2. H= {<-,A> : A€ Bs,} then for h = <~,A>, Gp = Gy = <G7A>
where G is a standard Gaussian matrix in R™*7 and so

("(H)=t*(Bs,) =E sup (G,A)=E|Gls_~vVm+T

I1A]l5, <1
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The complexity of pB :={f € F: ||f|| < p},p>0
Statictical complexities are local: *(pB N (f* + rSy))

pB
f* 4+ r52

pB N (f* -+ r52)

Definition Two complexity parameters of pB

rq(p) = inf {r >0: 0 (pBN (1S + f*)) < rm}
rM(,O) = inf {r >0: JZ*(pB N (r52 + f*)) < rzm}

r(p) = max(rq(p), rm(p))
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The complexity of pB :={f € F: ||f|| < p},p >0

Theorem (L. & Mendelson)

In the sub-Gaussian regression model Y = f*(X) 4+ og where:
1. X is a sub-Gaussian vector and g is sub-gaussian,

then r(p)? is the rate of convergence achieved by the ERM over
pB: argmingc,5 (Vi — F(X;))2)

Example: pB = {(-,t) : t € pB{} and E(X, t>2 = Ht||§

o/ 82 if p2N < o2 logd,

P
(m(p)* ~ 1 pory | L log (egj;f) if 02 log d < p?N < o2d?,
od if p2N > o2d.

2

2 log (¢4) if N < ¢d,
(ralp)? ~{ WE(R) TN=a

0 if N> cd.
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Statistical properties of RERM
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Assumptions : sub-gaussian framework

1£(Xly, == |nf{c>0 ]Eexp( FAX )> }

1E(X)Ily, < LIFXO,, < PUFX)] > L F(X)]|,,] < 2exp(—t?/2),Vt > 1.
Example: f(X) = <X’ t> where X = (X17 s 7Xd)T and X1yenny Xd i'!;d' X
and x € sz_

Assumption (subgaussian framework)

Al F is convex
A2 If(X)ly, < LIF(X),, forall f € F,

A3 o:=|Y - f*(X)Hw2 < 00
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The sparsity equation: a deterministic property

f*+pB
Cre(p) == U{O || () : f € f* + pB}
f* + I’(p)B2
f* 4+ pS

H, = FN(f*+ (pSNr(p)Br))

A(p):= inf su = f"
(o) = jnf sup (g )

Sparsity equation:

p* is such that A(p*) > 4p*/5
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The sparsity equation: examples

LASSO: If there exists v € t* + (p/20) By such that ||v||, = s then
A(p) > 4p/5 when

fs(i

and so one can take
Iog

p*~os

SLOPE: If there exists v € t* + (p/20) BSLOPE such that ||v||, = s then

A(p) > 4p/5 when
[ log( ed/J <L
j= 1 (p)

log(ed)
VN

and so one can take

p* ~os
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The sparsity equation: examples

Trace norm: If there exists V € A* + (p/20)Bs, such that rank(V) = r
then A(p) > 4p/5 when

Vs
r(p)
and so one can take
N m+T
~or
p N

RKHS norm: If p* > ||f*|| then 0 € f* 4 p*B and since
a|-1(0) = B*

then A(p*) = p* and the sparsity equation is satisfied for
p* ~ |If*||gns (this works for any norm).
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Main result in the sub-gaussian case (L.& Mendelson)

We assume that

Al F is convex

A2 IF (X, < LIF(X),, forall f € F,

A3 o =Y = (X)|ly, < oo

Let p* satisfy the sparsity equation A(p*) > 4p*/5 then for the
regularization parameter

the RERM f satisfies

H?f f* <r(p")

< p* and H?f f*

L,

with probability larger than

1 — 2exp(—ciN min(rm(p*)?/0?),1))
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Examples
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Applications: LASSO

Assume that:
1 E(X,t)* = ||t|, vt € R
2. (X, )], < Llitlly, vt € R
3.y = (X, t7) ’wz = 0 < oo where t* € argmin,cgs E(Y — (X, £))?
4. Jv e t* + (p*/20)By such that ||v|, = s for p* ~ os+/log(ed)/N
5. N 2 slog(ed/s)

then with probability larger than

1—2exp (—cos\/W(ed)/a)

s 1 log(ed)
[t -], S os'/Py/ N

1 log(ed)
t € argmin (N Z(Y, — (X, t))? + oo N t||1>

teRd

forany 1< p<2

where
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Applications: SLOPE

Assume that:

1 E(X,t)* = ||t|3, vt € R
2. [{x. ), <Lty vVt eR?
3.y = (X, t7) ’wz = 0 < oo where t* € argmin,cgs E(Y — (X, £))?

4. v € t* + (p*/20)Bsiope st. ||v[ly = s for p* ~ oslog(ed)/VN
. N = slog(ed/s)

then with probability larger than 1 — 2 exp (—cosm log(ed) /a)

o1

log(ed/s) A s ed

o <
[ ¢ lsuome < :

where

N
N (1 “a
t € argmin (N > (Vi = (X, 1) + N |t||SLOPE>

d
teR P
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Applications: Trace norm regularization

Assume that:
CE(X, A = [|A]Z,, VA € R™T
(XA, < LIAls,, VA € R™XT
Y = (X, A%) ‘wz = o where A* € argmin cpmer E(Y — (X, A))?
4. 3V € A* 4 (p*/20)Bs, s.t. rank(V) = r for p* ~or\/(m+ T)/N
5. NZr(m+T)

then with probability larger than 1 — 2 exp (—CQS\/N(ITI + T)/or), for all
1<p<2

N =

w

Sort/oy[MET
S, N

le\fA*

where
N
R ] m-+T
Ae 22%@1 (NE — (X, A))? +CoU\/7N ||A|51>
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Applications: SVM (1/2)

Let K: X x X — R be a (s.d.) kernel s.t. ||K||,, < oo and denote by
RKHS the associated RKHS. Denote by (;); the eigenvalues of

Ti: f = [K(,y)f(y)duly).

ro(p) = inf {r >0: (Z(pz)\j) A r2>1/2

J

< r\m}

r(p) = inf {r >0: 0<Z(p2)\j) A r2>1/2

r(p) = max(rq(p), rm(p))

) 5 1/2
. (SN A ()
~ O Ssu
0 p>p0 PV N

< rQ\FN}
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Applications: SVM (2/2)
Assume that:
LA (X)), < LIFX)l,,, VF € RKHS
2. Y = f*(X)|l, = o where f* € argmingcpgyys E(Y — f(X))?

then for p* ~ ||f*|| gps. With probability larger than
1 —2exp (—coN min(ry(p*)?/0,1)),

s

< *
LS r(p*)
where

N
u (1 2
f € argmin (N ,-Ezl(Yi — f(Xi))"+ Xo f||>

fERKHS
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Key steps in the proof:

1) Homogenity argument

2) Quadratic / multiplier / regularization
decomposition of the excess regularized risk
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Definitions and strategy

The regularized loss:

Le(x,y) + AN = (v = F(x)) + A If]

The excess regularized loss:

£ = (e + AN = (L + A1)

Strategy: show that for all f € F
If — £*|| > p* or ||f — f*[|,, > r(p") implies PyL} > 0.
This proves the result since the RERM f satisfies PNﬁfc‘ < 0 where
L
Png = lez;g(xiv ).
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The homogenity argument

> p* or H;A‘—f*

Let f € F be such that H? —f* e r(p*) then there
2

exists fy in the border of p*B N r(p*)By, such that PyL} > aPyL} for
some 0 < a <1.

CCL. show that PyL} > 0 for all f in the border of p*B N r(p*)By,.
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The quadratic / multiplier / regularization decomposition
Let f € F be in the border of p*B N r(p*)B,. We want to prove that
PnL? > 0.
We decompose the excess regularized risk as
PnLE = Pn(le —Ce) + ACIIFI = 1F7])

N

= %Z(Y = F(X)? = (Vi = £(X))? + ACIF] = 1)

— f*(X:))? ~ quadratic process (Q)

2 \

— (X)) (Xi) — F(X;)) ~ multiplier process (M)

2 \

;
;
>\( ||f|| — ||£*[|) ~ regularization term (R)
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3 tasks

» Lower bound on the quadratic process: w.h.p. for all f € f* 4 p*B
such that [|f — (|, > rq(p™)

& 1
%112
Z ))22§||f—f L, -

» Upper bounds on the multiplier process: w.h.p. for all f € f* 4+ p*B,

2 \

H i PO — £ )] S max (VR I - 1)

» lower on the regularization term via the sub-differential: for all f
such that [|f — f*|| = p* and [|f — ||, < r(p¥),

(r(p*))2 u f— N> (r(o* 2
25 s (6 F-F)2(07)

ACIFI =171 = <o
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Geometry of the Q/M/R decomposition

Q > |M|+|R|

Q> M| +|R|
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Quadratic loss function
» G. Lecué and S. Mendelson. Learning Subgaussian classes : Upper and minimax bounds

P> G. Lecué and S. Mendelson. Regularization and the small-ball method II: complexity
dependent error rates. JMLR 2017
P> G. Lecué and S. Mendelson. Regularization and the small-ball method I: sparse recovery.
AOS 2018
Lipschitz and linear loss functions

» P. Alquier, V. Cottet and G. Lecué. Estimation bounds and sharp oracle inequalities of
regularized procedures with Lipschitz loss functions. AOS 2019.

» S. Chrétien, M. Cucuringu, G. Lecué and L. Neirac Learning with Semi-Definite
Programming: new statistical bounds based on fixed point analysis and excess risk
curvature. JMLR 2021.

MOM estimators

» G. Lecué and M. Lerasle. Robust Machine Learning by median of means: theory and
practice. AOS 2020.

P G. Chinot, G. Lecué and M. Lerasle. Statistical Learning with Lipschitz and convex loss
functions. PTRF 2020.

» G. Chinot, G. Lecué and M. Lerasle Robust high dimensional learning for Lipschitz and
convex losses. JMLR 2020.

Thanks for your attention
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Minoration of the quadratic process via the small ball
method

Definition (Mendelson, Mendelson & Koltchinski)

The functions class F satisfies the small ball assumption when there
exists £ > 0 and € > 0 such that for every f,g € F,

PIF(X) = h(X)| = & |If = hll, ] > €

Theorem (Mendelson)
If F satisfies the small ball assumption then w.p. 1 — 2 exp(—Ne?/2),

2

N K
Z ()2 = S NF - I,

2 \

for every f € F such that ||f — f*||, > rq for

1 N
NZe;(fff )(X,

=

ro=inf|r>0:E sup
FEFN(F*+rBa)

IN
B
~
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LASSO under weak moment assumptions
Denote X = (x;)¢_; the random design. Assume that
1 EB(X,t)* = ||t|2 for every t € RY,
2. Il < woyB Il for p~ logd
3. PX,t)| > k|lt]l,] > € forall t € R
4. 0q:= HY - <X’ t*>H/_q
Then, with probability larger than

for some g > 2

colog? N
Na/2—1 7

2 *
a2 . | oglt]lglog(ed) . log(ed)
|2 —t H2§mm{q 7\, ,0q 1711 N

1—

where

1< log(ed)
te argmin (N Z(\/, - <Xi7 t>)2 + Coo'q N |t||1>

d
teR P
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Conclusion

We recover the classical rates of convergence of the LASSO for the same
regularization parameter

1. under weak moments assumptions

N

under the small ball property
no statistical model

the sparsity of t* appears because the subdifferential of ||-||; is large
at sparse vectors

> W
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Rates of convergence of ERM
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Some complexity measures of a set F C Ly(p)?
1. Gaussian mean width

ElGlz=E i Gr

where (Gr)rer is the canonical Gaussian process indexed by
F C LQ(/,L).
(Ex: F={(.t):te T}, T CR?then G =(G,t))

2. covering - entropy
N(F,eD)
is the minimal number of translated of the ball eD needed to cover
F (D is the unit ball of Ly(u)).
3. Gelfand k-width : cx(F) = infr.p,(u)mre diam(F NkerL, Ly(p)).

4. statistical complexity: minimax rate of convergence over F.
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How are they related?

supesg€y/Iog N(F,eD) < E|G|l < [+/log N(F,eD)de
T )
Sudakov Dudley

sup.sg€ey/log N(F,eD) < supyen Vkek(F) S E|G £
) T
Carl Pajor/ Tomczak — Jaegermann
(F convex body) (F star-shapped in 0)

ex: F={(t):te By}, X ~ s isotropic (ie. E(X,t)" = |t||5,)
then Sudakov, Carl and [P./T.-J.] are sharp = y/log d but Dudley is not
sharp = (log d)3/2.
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Learning theory framework and ERM

data: (X;, V)V, iid. ~(X,Y)€e X xR,
model: F C La(X, ) (where X ~ p),
estimator: Emprical risk minimization (ERM) :

=2

f € argmin Ry(f) where Ry(f Z —f( X)
feF

results : Fix 0 < § < 1. With probability greater than 1 — 9,

R(F) < inf R(F) + r(F0)

where R(f) = E(Y — f(X))?, R(F) = E[(Y — F(X))?|(X:, V)].
questions :  a) How large is ry(F,d)? (complexity of F, value of §,...)

b) Can we do better than ERM ? (minimax results - depending on 4,

the complexity structure of F,...)

38/62



Assumptions: sub-gaussian and convex class framework

1. Fis L-sub-Gaussian: Vf, g € F U {0},
17— gl < LIF— &l

. 1l
(Il = inf (¢ > 0: Eexp(F?(X)/c®) < 2) ~ supyy WL")

2. Y = f£(X)Il,, < o (noise level) where f3 € argmingc » R(f)

3. F is convex
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Theorem [L.& Mendelson]: sharp oracle inequality for
ERM in Sub-Gaussian framework

Let D be the unit ball in Ly(x) and define

sy = mf{o < s < dr(La)  Bl|Gll(r—rzynep < (CO/U)SZ\/N} :

= inf{O < r <dr(L) : E|Gll(z-z)nm < lem} :

1. If ¢ > c3r; then with probability at least 1 — 4 exp(—cyNo—2(s5)?),

R(P) < jnf R(F) + (si)"

2. If 0 < c3ryy then with probability at least 1 — 4 exp(—calV),

R(F) < inf R(F) + ()’
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Classical fixed points - two main streams

<1996

>1996

Fixed points were associated to Dudley entropy integrals: [van de
Geer, AOS90, AOS93, EP in M-estimation] or [Birgé, Massart
PTRF93]: residue = (t5)?

£ = inf (s >0: / 1 \/Iog N((F = f£) N sD, eD)de < (c2/0)52\FN).

Fixed points were associated to the expected supremum of the
empirical process (indexed by localized classes) or weighted,
symmetrized version, ...: [Massart, Saint Flour 2003] [Koltchinksii,
Saint Flour 2008], [Bartlett, Mendelson, PTRFO06], [Blanchard,
Bousquet, Massart]:

residue = inf¢s>0:E sup [(P— Pn)Lr| < cps -
{feF:PL<s}
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2 regimes for the noise - 2 statistical complexities - 2
empirical processes

1. If o > csrf; then residue = (s})?

2. If o < c3rf; then residue = (ry)?

We want to be as good as f# using observations (X;, Y;).;. There are
two different sources of statistical complexity:

> the projection P : f € Lp(u) — (f(X,-));V:1 is a source of complexity
because we want procedures having good “generalization” capabilities
(being good even outside of the data sample). Main source of
complexity when o < ry.

> the noise || Y — fz(X)||,, = o is a source of complexity because it is
a noise !: the values f7(X;) are hidden by the “noise” Y; — f£(X;).
Main source of complexity when o 2 ry.

Decomposition of the excess loss function:

Le(x,y) = (br — ) (x,y) = (v — F(x))° = (v — FE(x))?
= (F — £2)2(x) + 2(y — F200))(F5 — F)(x)
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2 regimes for the noise - 2 statistical complexities - 2
empirical processes

1. The quadratic process ((P — Pn)(f — ff*)z)fefm(f}Jr,D).
[Mendelson-Pajor-Tomczak]: w.h.p.

<dw2(H)E||G”H n (E|G”H)2> .

N
SO0 R(X) ~ BR(X)| £
i=1

sup

heH VN N
This measures the statistical complexity coming from the projection
via ry.

2. The linear process ((P — Pn)(y — f£)(ff — f))rern(rztm)-
[Mendelson]: w.h.p.

N
Z — E¢h(X)

This measures the statistical complexity coming from the noise
(= li€lly, = IY = (X, = o) via si.

B|Gll
VN

S 1€l
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Can we do better? (better rates for ERM? - better
procedures than ERM?)

Consider the gaussian regression model:
Y = £*(X) 4+ W where W ~ N(0,0?) indep. of X and f* € F
(note that f* = ff € F).

If o > r; then with probability at least 1 — 4 exp(—csNo—2(s5)?),
R(ferm) < infrer R(F) + (s3)?(sp)*

Theorem (L.& Mendelson - minimax lower bound)

If fy is a procedure such that, for every f* € F, with probability at least
1 — 4exp(—caNo=2(s5y)?), R(fv) < infrex R(f) + residue, then
necessarily residue 2 (sy)?(si)?.

ERM is minimax in the Gaussian regression model over sub-Gaussian and
convex models (for this confidence bound and noise level o 2 rf).
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ERM is minimax for high confidence but not for constant
confidence

Corollary

In the Gaussian regression model with respect to a sub-Gaussian and
convex model for the confidence 1 — 4 exp(—caNo~2(sy)?) and for a
noise level o 2 rf;, ERM is minimax.

Theorem (Birgé and Massart, PTRF93)
In the Gaussian regression model over 1-dimensional a-Hélderian spaces,
1. the ERM is minimax in expectation when o > 1/2,

2. the ERM is not minimax in the constant regime when a < 1/2: jt
satisfies a n=/? lower bound with constant probability (the minimax
rate being n—/(22+1) ),

Remark: Note that Gaussian mean widths of localized sets of
a—Halderian classe for o < 1/2 are infinite.
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1. This is a “high confidence minimax bound”. Classical minimax
bounds are given in expectation or with constant probability. We
used the Gaussian shift theorem.

2. For this “high confidence” minimax bound, two points in F are
enough. We did not use the complexity (or richness) of F.

3. What is hard (from a statistical point of view) in learning with high
confidence bound is the high confidence bound (not the complexity
or shape of F).

4. What happens, if we want to learn with constant probability in the
Gaussian regression model? Construct fy such that, for every
f* € F, with probability greater than 3/4,

. 2 .
HfN — || =R(f) - inff R(f) < residue.
2

fe
This is where the complexity of F comes into the game.

1. what complexity ? (are we going to recover the Gaussian complexity
of localized sets obtained in the upper bound ?) No - Sudakov -
Gelfand widths

2. can we use the Gaussian shift theorem in this case? Yes

3. are we going to recover the classical minimax results in this regime?
Yes [Le Cam - Birgé - Tsybakov - Yang/Barron - Fano - Assouad)]
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Minimax result for constant confidence - large noise
Theorem (L. & Mendelson)

If fyy is a procedure in the Gaussian regression model Y = f*(X) + W
(W ~ N(0,0?) ind. of X) such that for every f* € F, with probability
greater than 3/4, R(fy) < infrer R(f) + residue then necessarily

residue > (qj)?

where

gy =inf{s>0: s\/log N((F — f*)n2sD,sD) < (co/o)s*VN}.

Sudakov inequality (for the localized set (F — f*) N 2sD):

sup e\/log N((F — f*)N2sD,eD) SE |Gl 5 rynasp -

0<e<2s

“Sudakov complexity” of the localized set (F — f*) N 2sD at level s:

s\/log N((F — £+) N 2sD, sD)
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The same result follows from
1. Yang and Barron,"Information-theoretic determination of minimax
rates of convergence”. AOS 1999; via Fano inequality.

2. Tsybakov, “Introduction to non-parametric estimation”. Springer
2009 (cf. Theorem 2.5); via second Pinsker inequality and the
Kullback-Leiber divergence between two Gaussian measures.

Here, via the Gaussian shift theorem; i.e. the Gaussian isoperimetry (cf.
[Li& Kuelbs]).

This minimax result is to be compared with the result of the upper bound
in the large noise regime (o 2 rf).

1. minimax lower bound = (gj)? where

an = S@B {5\/Iog N((F — f*)n2sD,sD) < (c0/0)52m}
2. upper bound for ERM = (s})? where

NN LR
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conclusion for large noise

o 2 ry =inf, {EHGH(J-E_,:*)WD <arvN
w.p.g. 1—4dexp(—coNo=2(s})?), R(ferm) < infrer R(F) + (s5)?, where

st = inf {o <5 < dr(L2)  E||G|l(r—rymsp < (co/a)szm} .

In the Gaussian regression model, if a procedure satisfies a sharp oracle
inequality

> with the same confidence then residue > (s;)?;

> with constant probability then residue > (gj)? where

gy =inf{s>0: s\/log N((F — f*)n2sD, sD) < (CO/U)S2\/N}.

* 11,

If "Sudakov is sharp at the level g}

qﬁ,\/log N((F = *)N2qyD, g5, D) ~ E|Gl|(z_-)r2q: 0

then upper and lower bounds match and therefore ERM is minimax in the
Gaussian model for any subgaussian and convex model for both

exponentially large and constant confidences.
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conclusion for small noise o < ry

w.p.g 1—4exp(—cN), R(ferm) < infrer R(F) + (r})?, where
I‘;\kl = inf {0 <r< d]:(Lz) : ]E”GH(]:,,W)Q,D < Clr\/N} .

In the Gaussian regression model, if a procedure satisfies (for any
f* € F) a sharp oracle inequality w.p.g. 1/2 then

residue > infrcr (cn(F — f*))2.
If “Pajor/ Tomczak-Jaegermann is sharp at level N" (for some fy € F):

VNew((F = f57) N ryD) ~ El|Gll(z—)nrp
then upper and lower bounds match and therefore ERM is minimax in the

Gaussian model for any subgaussian and convex model for both
exponentially large and constant confidences.
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An example of application - ERM over the unit ball of the
MAX-norm
data: (X;, Y;)V, iid. € RP¥9 x R,
model: F = {(,A) : [|All nax < R}
HA”max = rninA=UV-r ||U||2>—>oo || V||2!—>OO
estimator: Emprical risk minimization (ERM) :

N

~ 1 2
Ac argmln — E Y —(X;,A))".
1Al <R N (Y= 06 4)

maxf i=1

Assumptions: P X is isotropic (E(A, X>2 (pq)~? HA||,2:) and
subgaussian (||<X’A>H¢2 < L(pq) 1 |AllF),
> Anax € argmina g E(Y — (X, A))? and
HY <X Atnaxwwz <o
Gaussian mean width: convXy C B,,.x C Kgconv X4 where
Xy ={uv’ :ue {£1}P,v € {£1}9}. Let & = (N(0,(pq)~1);) € RPX9
El|Gll(z_fynsp = E sup (8,4)
1Al max <R3N All e <s+/Pq
< KGRE sup (&,A) < KGR Jmax &\/Io |[X+] < KeRVp+gq

AeXy
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Therefore, (sy)? ~ oR\/(p+q)/N and (r};)?> ~ R(p + q)/N.

Ifa>R\/ p—|—q /N then w.p.g. 1 —2exp(—c1y/N(p+ q)/(cR)),

_ 2 pt+a
E(Y —(AX)P < inf E(Y = (AX))+aoR L.
If o < R\(p+q)/N, then w.p.g. 1 —2exp(—c1N),

p+a
E(Y — (A, X))? < o nf E(Y - (A, X)) + QR

In the Gaussian linear model (Y = <A*,X> + W), we obtain a minimax
bound (for constant and exponentially large confidence)

p+q
R4
N
via the entropy estimate of [Cai&Wenxin, 2013].
Therefore, ERM is minmax over the MAX-norm model in the Gaussian
linear model. A similar result was obtained in [Cai&Wenxin, 2013] for the
ERM over RBpax N (aBE9).
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Take home message on the minimaximality of ERM

For the model Y = f*(X) + W where W ~ N(0,0?) is ind. of X and
f* € F — a sub-gaussian and convex class, we have

1. in the large noise regime o 2 ry,

complexity constant confidence | large confidence
ERM (sharp) Gaussian ((sy)?) Gaussian ((sy)?)
minimax (achievable) | Sudakov ((gy)?) | Gaussian ((s})?)

2. in the small noise regime o < ry,

complexity | constant confidence or large confidence
ERM Gaussian ((r5)?) (sharp ?)
minimax Gelfand (c%) (achievable ?)
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A word about the convexity assumption; example in
aggregation

F={f,...,fu}; f € argmincg Ra(f).
1. with probability larger than 1/2,
log |F|

£)> mi .
R(f)> min R(f)+ o .

2. There exists a procedure  such that w.h.p.

log | F|
-

M
R(F)< min R(f)+

Convexity of the model is very important for ERM (more than the
complexity structure).
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Examples of L-sub-Gaussian classes

F is a set of linear functional and X is distributed like:

1. X = (XY, X9 where X1,--- X9 are independent
L-sub-gaussian variables (i.e. ||X"H¢2 < LX)

2. the uniform measure on dl/pBg.

3. X = (X,---, X?) unconditional, supported in RB, and
E(X)?2>c¢ > 0.

4. X € M, q uniformly distributed over {£E;:1<i<p,1<j<q}

(where (Ej) is the canonical basis of M,, 4) is a sub-gaussian design.

5. X € M, g uniformly distributed over {Ej; : 1 <i<p,1<j<q}
(matrix completion design) and B C M,, 4 such that
|Ajl < R,Vi,j,A € B. Then {(-,A): A€ B} is L-sub-gaussian for
X.
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Other examples of Gaussian mean widths

1. If p>2then £,(BI NsBY) = (.(sBf) = sVd.
2. Ifp<2thenset1=1/p+1/qand put 1/r=1/2 —1/q. For any
d’l/’<5§ 1,

J@d"e  if 2 < q < log(2d) and s~ < ¢/ g/

0. (BYNsBS) ~
(B5NsBs) { \Jlog (2ds?) if g > log(2d)

and if 2 < g < log(2d) and s71 > Cf/rdl/’ then
sVd S 0.(BINsBY) S o svd.

Furthermore, if s < d~1/", then ¢,(BI NsBY) = ¢.(sBf) = sV/d.

56 /62



Examples of Gelfand width [Foucart, Pajor, Rauhut,
Ullrich]

0<p<l p<g<2 N<d,
log(ed/N)\ 4
CN(Bg,fg)wmin (L#)P q

and for B, oo = {x € R? : x* < j71/P} when p < 1

log(ed/N) 3
cn(B o, £3) ~ min (1,%)
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2 regimes for the noise - 2 statistical complexities - 2
empirical processes

The proof of the upper bound follows from the strategy developped in
[Bartlett-Mendelson, PTRF 06]: the isomoprhic method.
If on an event, one has for every f € F, s.t. PLs > \*,

1 3
E'DLf <Pyl < EPLf (1)
then, on the same event, R(?ERM) <infrer R(f) + \* (because

PuLC; < 0).
To prove (1), it is enough to prove that

sup

N
(rpeeay | N P

Ly 2
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Why do we work at this confidence bound?

Classical results in the bounded case are written like (cf. Koltchinksii or
Massart): Vt > ¢y, with probability greater than 1 — 4 exp(—cit),

~ t
< i *\12 .
R(Fer) < jnf R(F) + 17| max ((si)%, 1)
The trade-off is obtained for t = N(sj))2.

1. below t < N(sj)? the probability estimate is damaged (the residue is
still (s5)?).
2. above t > N(sy)?, the residue is damaged.
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Sharp estimates on the risk of ERM

For the problem of estimation of the mean of a gaussian vector:
Y ~ N(u, l4)
where ;1 € T and T is a convex subset of R?. The ERM is
t€argmin|Y —t|,,t=PrY
teT
fixed point equation:
t, € arg;r:)ax (E HG”TQ(,H-rB;’) —r?/2)

Theorem (Chatterjee)
For every x > 0,

—x*t?
A @
P11 = nl = ] 2 xt.) < 300 (557 5 )
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Beyond convex class

The upper bound results are true under the following assumptions:
1. F is B-Bernstein: Vf € F,

If = FFlIL,q) < BPLe = B(R(F) = R(f7)).

2. F — F is star-shaped around O ([f — g,0] C F — F,Vf,g € F).

But for locally compact classes, the Bernstein condition holds for all f#
iff the class F is convex.
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Complexity is important but geometry is even more
important

Theorem
Let X ~ p. Let F C La(p) be locally compact. The following are
equivalent:

i) for any real valued random variable Y € L,,
3f% € argming » E(Y — £(X))? and for every f € F,

E(F(X) - F£(X))* <E((Y — £(X))* = (Y — F£(X))?).
ii) F is non-empty and convex.

For non-convex model, ERM cannot do better than l/m

= the shape of the model really matters in Learning theory.

()
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