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Multi-class classification: setting

Framework
I observation X ∈ X and Y ∈ Y = {1, . . . ,K}
I classifier g : X → Y
I misclassification risk R(g) = P(g(X) 6= Y )

Optimal rule
I conditional probabilities pk(X) = P(Y = k

∣∣X)

I Bayes classifier g∗(·) ∈ arg maxk∈Y pk(·)
I oracle risk R∗ = R(g∗) = ming R(g)

Goal
I learning sample (Xi, Yi)1≤i≤n and new observation Xn+1

I empirical classification rule ĝ based on the learning sample
I ĝ(Xn+1) prediction of the associated label
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Fairness: Motivating example
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Algorithmic Fairness

Motivation
I mitigate the bias contained in historical data
I reduce influence of a sensitive attributes in prediction
I lot of attention in recent years Calders et al. (2009), Zemel et

al. (2013), Zafar et al., Donini et al. (2018), Agarwal et al (2018),
Barocas et al. (2019), . . .

Application
I social sicences
I insurance
I artificial intelligence, . . .
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Fairness in multi-class classification: group fairness approach

Framework
I Obervation (X,S) and Y ∈ Y,
I S ∈ {−1, 1} sensitive attribute
I classifier g → prediction g(X,S)

Definition of fairness
I Demographic parity (DP), for each k ∈ Y

P (g(X,S) = k|S = 1) = P (g(X,S) = k|S = −1)

I Equalized odds, for each k ∈ Y

P (g(X,S) = k|S = 1, Y = k) = P (g(X,S) = k|S = −1, Y = k)
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Multi-class classification under DP constraint

Problem
I πs = P(S = s) > 0, et pk(X,S) = P(Y = k|X,S)

I g∗ ∈ arg ming{P(g(X,S) 6= Y ), g satisfies DP}
I lagrangian associated to the minimization problem

Rλ(g) = P (g(X,S) 6= Y )+

K∑
k=1

λk
∑
s∈S

sP(g(X,S) = k|S = s)

Continuity assumption
I t 7→ P(pk(X,S)− pj(X,S) ≤ t|S = s) is continuous
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Optimal fair classifier

Optimal predictor
I the optimal fair classifier g∗ can be characterized as

g∗(x, s) ∈ arg max
k

(
pk(x, s)−

s

πs
λ∗k

)
I λ∗k are lagrange multiplier defined as

λ∗ ∈ arg min
λ∈RK

∑
s∈S

EX|S=s
[
pk(X, s)−

s

πs
λ∗k

]

Proposition
Under the continuity assumption, we have

g∗ ∈ arg min
g
Rλ∗(g)



8/15

Data driven procedure: post-processing approach

Objective

I Estimate g∗(x, s) ∈ arg maxk

(
pk(x, s)− s

πs
λ∗k

)
Different approaches
I data transformation Zemel et al. (2013), Calmon et al. (2016)

I in-processing Agarwal et al (2018), Donini et al. (2018)

I post-processing Hardt et al. (2016), Le Gouic et al. (2020)

Plug-in approach
I labeled sample → estimate pk
I unlabeled sample (X1, S1), . . . , (XN , SN )

I {S1, . . . , SN} → estimate πs by their empirical frequencies
I {X1, . . . , XN} → estimate parameter λ∗k
I fairness guarantee requires continuity assumption
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Post-processing estimator: randomization

Randomization
I introduce (ζk)k∈Y i.i.d. from U[0,u]
I p̄k(x, s, ζk) = p̂k(x, s) + ζk

Randomized fair classifier
I (X1, . . . , XN )→ (Xs

1 , . . . , X
s
Ns

) i.i.d. from X|S = s

I estimator λ̂

λ̂ ∈ arg min
λ∈RK

∑
s∈S

Ns∑
i=1

max
k

(
p̄k(X

s
i , s, ζ

s
k,i)−

s

π̂s
λk

)
I resulting classifier

ĝ(x, s) ∈ arg max
k∈Y

(
p̄k(x, s, ζk)−

s

π̂s
λ̂k

)
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Theoretical guarantees: fairness guarantee

Unfairness measure

U(g) = max
k
|P (g(X,S) = k|S = 1)− P (g(X,S) = k|S = −1)|

Distribution free-result
There exists C depending only on K and πs such that for any
estimator p̂k

E [U(ĝ)] ≤ CN−1/2
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Theoretical guarantees: consistency

Measure of performance
I g∗ ∈ arg mingRλ∗(g)

Rλ∗(g) = P (g(X,S) 6= Y )+

K∑
k=1

λ∗k
∑
s∈S

sP(g(X,S) = k|S = s)

I ‖p̂− p‖1 =
∑K

k=1 |p̂k(X,S)− pk(X,S)|

Theorem
Under continuity assumption

E [Rλ∗(ĝ)−Rλ∗(g∗)] . E [‖p̂− p‖1] + u+N−1/2

I assume that p̂k are consistent and u→ 0
↪→ ĝ is consistent
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Extension to ε-fairness

Approximate fairness: ε-DP
I g is ε-fair if U (g) ≤ ε

Optimal ε-fair classifier
I g∗ε ∈ arg ming{P(g(X,S) 6= Y ), g satisfies ε− DP}
I
(
λ∗(1), λ∗(2)

)
minimizer of

∑
s∈S

EX|S=s
[
pk(X, s)−

s

πs

(
λ
(1)
k − λ

(2)
k

)]
+ ε

(
λ
(1)
k + λ

(2)
k

)
I g∗ε(x, s) ∈ arg maxk

(
pk(x, s)− s

πs

(
λ
∗(1)
k − λ∗(2)k

))
Estimation
I same procedure as for exact fairness
I fairness and risk guarantees
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Numerical illustration: model

Synthetic data: Gaussian mixture
I let ck ∼ Ud(−1, 1), and µk1, . . . , µ

k
m ∼ Nd(0, Id)

I covariates: (X|Y = k) ∼ 1
m

∑m
i=1Nd(ck + µki , Id)

I sensitive feature:

(S|Y = k) ∼ 2 · B(p)− 1, k ≤ bK/2c
(S|Y = k) ∼ 2 · B(1− p)− 1, k > bK/2c

I fair data p = 0.5 / unfair data p ∈ {0, 1}
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Numerical illustration: results

Scheme
I generate 5000 examples
I train/test/unlabeled = 60%/20%/20%

I estimate pk on train dataset using random forests
I build ĝ using unlabeled dataset
I evaluated Acc(ĝ) and U(ĝ) using test dataset
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Perspective

DP multiclass classification
I exact and ε-fairness
I Plug-in approach
I fairness and risk guarantee

Some extension
I Extension to prediction without sensitive attribute
I Extension to multiple sensitive attributes
I Extension to other fairness measures


