Fairness guarantee in multi-class classification

Christophe Denis

Joint work with: R. Elie, M. Hebiri, and F. Hu

LAMA, Université Gustave Eiffel

31/09/2022

Journées MAS, Rouen

Multi-class classification: setting

Framework

- observation $X \in \mathcal{X}$ and $Y \in \mathcal{Y} = \{1, \dots, K\}$
- classifier $g: \mathcal{X} \to \mathcal{Y}$
- misclassification risk $R(g) = \mathbb{P}(g(X) \neq Y)$

Optimal rule

- conditional probabilities $p_k(X) = \mathbb{P}(Y = k | X)$
- Bayes classifier $g^*(\cdot) \in \arg \max_{k \in \mathcal{Y}} p_k(\cdot)$

• oracle risk
$$R^* = R(g^*) = \min_g R(g)$$

Goal

- ▶ learning sample $(X_i, Y_i)_{1 \le i \le n}$ and new observation X_{n+1}
- \blacktriangleright empirical classification rule \widehat{g} based on the learning sample
- $\hat{g}(X_{n+1})$ prediction of the associated label

Fairness: Motivating example

Machine learning

6

Randy Olson @randal_olson · 4h

Hungarian has no gendered pronouns, so Google Translate makes some assumptions.

#CodedBias in Google Translate. #DataScience #MachineLearning

Source: reddit.com/r/europe/comme...

☆ Text Documents						
HUNGARIAN - DETECTED POLISH PO 🗸	$\stackrel{\rightarrow}{\leftarrow}$	ENGLISH	POLISH	PORTUGU	ESE	\sim
Ó szép. Ő okos. Ő olvas. Ő mosogat. Ő épít. Ó varr. Ő tanít. Ő főz. Ő kutat. Ó gyereket nevel. Ő zenél. Ő takarító. Ő polítikus. Ő sok pénzt keres. Ő süteményt süt. Ő professzor. Ő asszisztens.	She is beautiful. He is clever. He reads. She washes the dishes. He builds. She sews. He teaches. She cooks. He's researching. She is raising a child. He plays music. She's a cleaner. He is a politician. He makes a lot of money. She is baking a cake. He's a professor. She's an assistant.				r tre tre tris	
U 194 / 5000	/	•		6	0	<
		C 264		. ^ .		

Motivation

- mitigate the bias contained in historical data
- reduce influence of a sensitive attributes in prediction
- lot of attention in recent years Calders *et al.* (2009), Zemel *et al.* (2013), Zafar *et al.*, Donini *et al.* (2018), Agarwal *et al* (2018), Barocas *et al.* (2019), ...

Application

- social sicences
- insurance
- artificial intelligence, ...

Framework

- Obervation (X, S) and $Y \in \mathcal{Y}$,
- $S \in \{-1, 1\}$ sensitive attribute
- classifier $g \to \text{prediction } g(X,S)$

Definition of fairness

• Demographic parity (DP), for each $k \in \mathcal{Y}$

$$\mathbb{P}\left(g(X,S)=k|S=1\right)=\mathbb{P}\left(g(X,S)=k|S=-1\right)$$

• Equalized odds, for each $k \in \mathcal{Y}$

 $\mathbb{P}\left(g(X,S)=k|S=1,Y=k\right)=\mathbb{P}\left(g(X,S)=k|S=-1,Y=k\right)$

Multi-class classification under DP constraint

Problem

$$\blacktriangleright \ \pi_s = \mathbb{P}(S=s) > 0, \ \text{et} \ p_k(X,S) = \mathbb{P}(Y=k|X,S)$$

- ▶ $g^* \in \arg\min_g \{ \mathbb{P}(g(X, S) \neq Y), g \text{ satisfies DP} \}$
- lagrangian associated to the minimization problem

$$\mathcal{R}_{\lambda}(g) = \mathbb{P}\left(g(X,S) \neq Y\right) + \sum_{k=1}^{K} \lambda_k \sum_{s \in \mathcal{S}} s \mathbb{P}(g(X,S) = k | S = s)$$

Continuity assumption

•
$$t \mapsto \mathbb{P}(p_k(X,S) - p_j(X,S) \le t | S = s)$$
 is continuous

Optimal fair classifier

Optimal predictor

 \blacktriangleright the optimal fair classifier g^{\ast} can be characterized as

$$g^*(x,s) \in \arg\max_k \left(p_k(x,s) - \frac{s}{\pi_s} \lambda_k^* \right)$$

• λ_k^* are lagrange multiplier defined as

$$\lambda^* \in \arg\min_{\lambda \in \mathbb{R}^K} \sum_{s \in \mathcal{S}} \mathbb{E}_{X|S=s} \left[p_k(X,s) - \frac{s}{\pi_s} \lambda_k^* \right]$$

Proposition

Under the continuity assumption, we have

$$g^* \in \arg\min_g \mathcal{R}_{\lambda^*}(g)$$

Data driven procedure: *post-processing approach*

Objective

• Estimate
$$g^*(x,s) \in \arg \max_k \left(p_k(x,s) - \frac{s}{\pi_s} \lambda_k^* \right)$$

Different approaches

- ▶ data transformation Zemel *et al.* (2013), Calmon *et al.* (2016)
- in-processing Agarwal et al (2018), Donini et al. (2018)
- post-processing Hardt et al. (2016), Le Gouic et al. (2020)

Plug-in approach

- ▶ labeled sample \rightarrow estimate p_k
- unlabeled sample $(X_1, S_1), \ldots, (X_N, S_N)$
- $\{S_1, \ldots, S_N\} \rightarrow$ estimate π_s by their empirical frequencies
- $\{X_1, \ldots, X_N\} \rightarrow \text{estimate parameter } \lambda_k^*$
- fairness guarantee requires continuity assumption

Post-processing estimator: randomization

Randomization

► introduce $(\zeta_k)_{k \in \mathcal{Y}}$ i.i.d. from $\mathcal{U}_{[0,u]}$

$$\quad \bullet \quad \bar{p}_k(x,s,\zeta_k) = \hat{p}_k(x,s) + \zeta_k$$

Randomized fair classifier

•
$$(X_1, \ldots, X_N) \to (X_1^s, \ldots, X_{N_s}^s)$$
 i.i.d. from $X|S = s$
• estimator $\hat{\lambda}$

$$\hat{\lambda} \in \arg\min_{\lambda \in \mathbb{R}^K} \sum_{s \in \mathcal{S}} \sum_{i=1}^{N_s} \max_k \left(\bar{p}_k(X_i^s, s, \zeta_{k,i}^s) - \frac{s}{\hat{\pi}_s} \lambda_k \right)$$

resulting classifier

$$\hat{g}(x,s) \in rg\max_{k \in \mathcal{Y}} \left(\bar{p}_k(x,s,\zeta_k) - \frac{s}{\hat{\pi}_s} \hat{\lambda}_k \right)$$

Unfairness measure

$$\mathcal{U}(g) = \max_{k} \left| \mathbb{P}\left(g(X,S) = k | S = 1 \right) - \mathbb{P}\left(g(X,S) = k | S = -1 \right) \right|$$

Distribution free-result

There exists C depending only on K and π_s such that for any estimator \hat{p}_k

 $\mathbb{E}\left[\mathcal{U}(\hat{g})\right] \le CN^{-1/2}$

Measure of performance

 $\blacktriangleright g^* \in \arg\min_g \mathcal{R}_{\lambda^*}(g)$

$$\mathcal{R}_{\lambda^*}(g) = \mathbb{P}\left(g(X,S) \neq Y\right) + \sum_{k=1}^K \lambda_k^* \sum_{s \in \mathcal{S}} s \mathbb{P}(g(X,S) = k | S = s)$$

•
$$\|\hat{\mathbf{p}} - \mathbf{p}\|_1 = \sum_{k=1}^K |\hat{p}_k(X, S) - p_k(X, S)|$$

Theorem

Under continuity assumption

 $\mathbb{E}\left[\mathcal{R}_{\lambda^*}(\hat{g}) - \mathcal{R}_{\lambda^*}(g^*)\right] \lesssim \mathbb{E}\left[\left\|\hat{\mathbf{p}} - \mathbf{p}\right\|_1\right] + u + N^{-1/2}$

▶ assume that \hat{p}_k are consistent and $u \to 0$ $\hookrightarrow \hat{g}$ is consistent

Extension to ε -fairness

Approximate fairness: ε -DP

 $\blacktriangleright \ g \text{ is } \varepsilon \text{-fair if } \mathcal{U}\left(g\right) \leq \varepsilon$

Optimal ε -fair classifier

$$\sum_{s \in \mathcal{S}} \mathbb{E}_{X|S=s} \left[p_k(X,s) - \frac{s}{\pi_s} \left(\lambda_k^{(1)} - \lambda_k^{(2)} \right) \right] + \varepsilon \left(\lambda_k^{(1)} + \lambda_k^{(2)} \right)$$

•
$$g_{\varepsilon}^*(x,s) \in \arg\max_k \left(p_k(x,s) - \frac{s}{\pi_s} \left(\lambda_k^{*(1)} - \lambda_k^{*(2)} \right) \right)$$

Estimation

- same procedure as for exact fairness
- fairness and risk guarantees

Numerical illustration: model

Synthetic data: Gaussian mixture

- ▶ let $c^k \sim \mathcal{U}_d(-1, 1)$, and $\mu_1^k, \dots, \mu_m^k \sim \mathcal{N}_d(0, I_d)$ ▶ covariates: $(X|Y = k) \sim \frac{1}{m} \sum_{i=1}^m \mathcal{N}_d(c^k + \mu_i^k, I_d)$
- sensitive feature:

$$\begin{aligned} (S|Y=k) &\sim 2 \cdot \mathcal{B}(p) - 1, k \leq \lfloor K/2 \rfloor \\ (S|Y=k) &\sim 2 \cdot \mathcal{B}(1-p) - 1, k > \lfloor K/2 \rfloor \end{aligned}$$

 $\blacktriangleright\,$ fair data p=0.5 / unfair data $p\in\{0,1\}$

Numerical illustration: results

Scheme

- ▶ generate 5000 examples
- train/test/unlabeled = 60%/20%/20%
- estimate p_k on *train* dataset using random forests
- build \hat{g} using *unlabeled* dataset
- \blacktriangleright evaluated $\operatorname{Acc}(\hat{g})$ and $\mathcal{U}(\hat{g})$ using test dataset

DP multiclass classification

- exact and ε-fairness
- Plug-in approach
- fairness and risk guarantee

Some extension

- Extension to prediction without sensitive attribute
- Extension to multiple sensitive attributes
- Extension to other fairness measures