Détermination de la prédictivité d'un modèle via la sélection incrémentale de l'ensemble de test

Elias Fekhari ¹ Bertrand looss ¹ Joseph Muré ¹ Luc Pronzato ² Maria João Rendas ²

¹EDF R&D - 6 quai Watier, Chatou, France

²CNRS, Université Côte d'Azur, Laboratoire I3S - 2000 route des lucioles, Sophia Antipolis, France

29 août 2022

Tester un modèle d'apprentissage automatique (ML)

Modèle d'apprentissage automatique (ou métamodèle)

 $\eta_m : \mathbb{R}^d \to \mathbb{R}$ construit à partir d'un ensemble d'apprentissage $(\mathbf{X}_m, \mathbf{y}_m)$, métamodèle du véritable modèle $y : \mathbb{R}^d \to \mathbb{R}$

Ensemble d'apprentissage

 $\mathbf{y}_m = [y(\mathbf{x}^{(1)}), \dots, y(\mathbf{x}^{(m)})]$ sont les sorties observées aux points $\mathbf{X}_m = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}} \subset \mathbb{R}^d$

Comment certifier sa performance?

- Quel protocole de test utiliser?
- Quelle métrique de performance utiliser?

On ne peut jamais qu'estimer la véritable performance du métamodèle.

Validation croisée

Méthodes usuelles : k-fold et Leave-One-Out (LOO)¹.

Total available dataTest-set : 1^{st} fold \Rightarrow Performance metric 1Test-set : 2^{nd} fold \Rightarrow Performance metric 2Test-set : 3^{rd} fold \Rightarrow Performance metric 3Test-set : 4^{th} fold \Rightarrow Performance metric 4

Limites de la validation croisée

- Coûteuse : il faut construire k modèles
- Moyenne la performance de modèles distincts : acceptable ?
- EDF doit pouvoir valider des modèles ML de prestataires.

Les ensembles d'apprentissage et de test doivent donc être indépendants.

<u>Comment choisir un ensemble de test « optimal » ?</u>

1. Tadayoshi FUSHIKI. "Estimation of prediction error by using K-fold cross-validation". In : *Statistics and Computing* 21.2 (2011), p. 137-146.

Qu'est-ce qu'un « bon » ensemble de test?

Ensemble de test

$$\begin{split} \mathbf{y}_n &= [y(\mathbf{x}^{(1)}), \dots, y(\mathbf{x}^{(n)})] \text{ sont les sorties observée aux points} \\ \mathbf{X}_n &= \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\} \subset \mathbb{R}^d \end{split}$$

- Itératif pour que l'estimation soit bonne quelle que soit la taille *n*.
- Représentatif de la loi μ du vecteur aléatoire X.
- Complémentaire de X_m : pour qu'un modèle construit sur l'union X_{n+m} soit meilleur

Ensemble des candidats

 ${\mathcal S}$ est un sous-ensemble « assez dense » de ${\mathbb R}^d$ de cardinal $N\gg n$ discrétisant la loi $\mu.$

Sélection itérative

À l'itération *i*, avec $\mathbf{X}_i = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i)}\}$, optimiser la fonction $\mathcal{A}(\cdot | \mathbf{X}_i)$:

$$\mathbf{x}^{(i+1)} \in \underset{\mathbf{x} \in \mathcal{S} \setminus \mathbf{X}_{i}}{\arg\min} \mathcal{A}\left(\mathbf{x} | \mathbf{X}_{i}\right) . \tag{1}$$

Choix fondé sur la distance

Construction géométrique dans un ensemble borné : le nouveau point \mathbf{x} est pris aussi éloigné que possible des points $\mathbf{x}^{(i)}$ précédemment sélectionnés.

Fully-Sequential Space-Filling² (FSSF)

À l'itération *i*, avec $\mathbf{X}_i = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i)}},$

$$\mathbf{x}^{(i+1)} \in \underset{\mathbf{x}\in\mathcal{S}\setminus\mathbf{X}_{i}}{\arg\max} \left[\underset{j\in\{1,\dots,i\}}{\min} \|\mathbf{x}-\mathbf{x}^{(j)}\| \right].$$
(2)

- Si la loi μ n'est pas uniforme, il faut appliquer une transformation iso-probabiliste.
- Le FSSF est proche de l'algorithme CADEX (« Coffee house design »)

2. B. SHANG et D. APLEY. "Fully-sequential space-filling design algorithms for computer experiments". In : *Journal of Quality Technology* 53 (2020), p. 1-24.

Choix fondé sur la distance

Figure – Ensembles de test séquentiels FSSF (uniforme et normal bivarié)

Maximum Mean Discrepancy³

Reproducing Kernel Hilbert Space (RKHS)

Soit une fonction symétrique définie positive $k : \mathcal{X}^2 \to \mathbb{R}$ (noyau). Un RKHS $\mathcal{H}(k)$ est un espace de Hilbert de fonctions $f : \mathcal{X} \to \mathbb{R}$ tel que :

- $k(\cdot, \mathbf{x}) \in \mathcal{H}(k), \quad \forall \mathbf{x} \in \mathcal{X}.$
- (reproduction) $\langle f, k(\cdot, \mathbf{x}) \rangle_{\mathcal{H}(k)} = f(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X}, \forall f \in \mathcal{H}(k)$

Tout noyau défini positif définit un unique RKHS.

Maximum Mean Discrepancy (MMD)

Il s'agit d'une distance entre distributions ${\it P}$ and ${\it Q}$ définie par :

$$\mathrm{MMD}_{k}(P,Q) := \sup_{\|f\|_{\mathcal{H}(k)} \leq 1} \left| \int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d}P(\mathbf{x}) - \int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d}Q(\mathbf{x}) \right|$$
(3)

Un noyau k est dit caractéristique si $MMD_k(P, Q) = 0 \Leftrightarrow P = Q$.

³. C.J. OATES. *Minimum Discrepancy Methods in Uncertainty Quantification*. Lecture Notes at ETICS Summer School. 2021.

Maximum Mean Discrepancy

Dans la suite, nous supposons k continu et borné. Alors⁴

 $\mathrm{MMD}_{k}(P,Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{H}(k)} \quad \text{where} \quad \mu_{P} = \int k(\mathbf{x},\cdot)dP(\mathbf{x}).$ (4)

Figure – Plongement par moyenne des lois P et Q dans le RKHS $\mathcal{H}(k)$.

4. OATES, Minimum Discrepancy Methods in Uncertainty Quantification. EDF R&D Construction incrémentale de l'ensemble test

Choix visant l'uniformité

À l'itération *i*, avec $\mathbf{X}_i = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i)}}$, la loi discrète correspondante $\xi_i = \frac{1}{i} \sum_{j=1}^{i} \delta(\mathbf{x}^{(j)})$ et un noyau *k* :

$$\mathbf{x}^{(i+1)} \in \underset{\mathbf{x}\in\mathcal{S}\backslash\mathbf{X}_{i}}{\arg\min}\left(\int k(\mathbf{x},\mathbf{x}')d\xi_{i}(\mathbf{x}') - \int k(\mathbf{x},\mathbf{x}')d\mu(\mathbf{x}')\right)$$
(5)

Kernel herding⁵

$$\mathbf{x}^{(i+1)} \in \underset{\mathbf{x}\in\mathcal{S}\setminus\mathbf{X}_{i}}{\operatorname{arg\,min}} \left(\frac{1}{i} \sum_{i=1}^{i} k(\mathbf{x}, \mathbf{x}^{(i)}) - \frac{1}{N} \sum_{\mathbf{x}'\in\mathcal{S}} k(\mathbf{x}, \mathbf{x}') \right)$$
(6)

Points supports gloutons⁶ (noyau distance d'énergie)

$$\mathbf{x}^{(i+1)} \in \underset{\mathbf{x}\in\mathcal{S}\setminus\mathbf{X}_{i}}{\arg\min}\left(\frac{1}{N}\sum_{\mathbf{x}'\in\mathcal{S}}\|\mathbf{x}-\mathbf{x}'\| - \frac{1}{i+1}\sum_{i=1}^{n}\|\mathbf{x}-\mathbf{x}^{(i)}\|\right)$$
(7)

5. Y. CHEN, M. WELLING et A. SMOLA. "Super-samples from kernel herding". In : *Proc. of the 26th UAI Conference.* AUAI Press. 2010.

6. S. MAK et V.R. JOSEPH. "Support points". In : Annals of Statistics (2018).

EDF R&D

Choix visant l'uniformité

Figure – Ensembles test construits séquentiellement par kernel herding (loi uniforme et normale bi-variée)

Méthode disponible dans la librairie python otkerneldesign

EDF R&D

Choix visant l'uniformité

Figure – Ensembles test construits séquentiellement par points supports gloutons (loi uniforme et normale bi-variée)

Méthode disponible dans la librairie python otkerneldesign

EDF R&D

⁹ ∕∂ otkerneldesign	Home	Doc	Examp	ples	
odule otkerneldesign otkerneldesign 0.1.1 documentation Index of classes KernelHerding		vious	next	index	
KernelHerding	Previous Index of c	topic lasses			
<pre>class otkerneldesign.KernelHerding(kernel=None, distribution=None, candidate_set_size=None, candidate_set=None, initial_design=None) Incrementallyselet new design points with kernel herding.</pre>	Next top KernelHer	ic dingTen	sorized		
Parameters: kernel : openturns.CovarianceModel Covariance kernel used to define potentials. By default a product of Matern kernels with smoothness 5/2.	This Pa	ige rce			
distribution : openturns. Distribution Distribution the design points must represent. If not specified, then candidate,set must be specified instead. Even If candidate set is specified, can be useful if it allows the use of analytical formulas.	Quick s	Quick search			
candidate_set_size : positive int Size of the set of all candidate points. Unnecessary if candidate_set is specified. Otherwise, 2 ¹² by default.				Go	
candidate_set : 2-d list of float Large sample that empirically represents a distribution. If not specified, then distribution and candidate_set/szer was the in order to generate it automatically.					
initial_design : 2-d list of floot Sample of points that must be included in the design. Empty by default.					
Examples					
<pre>>>> import openturns as ot >>> import otkerneldesign as otkd >>> distribution ot: (supposedDistribution([ot.Normal(0.5, 0.1)] * 2) >>> # Kernel definition >>> # Kernel definition >>> kernel definition >>> kernel entry design >>> kh = otkd.KernelHerding(kernel=kernel, distribution=distribution) >>> kh = otkd.KernelHerding(supposed) >>> kh = otkd.KernelHerding(supposed)</pre>					

Au-delà des métriques de performance usuelles

Coefficient de prédictivité idéal du prédicteur η_m

$$Q_{\text{ideal}}^{2}(\mu) = 1 - \frac{\text{ISE}_{\mu}(\mathbf{X}_{m}, \mathbf{y}_{m})}{\text{Var}_{\mu}(y(\mathbf{X}))} = 1 - \frac{\int_{\mathcal{X}} [y(\mathbf{x}) - \eta_{m}(\mathbf{x})]^{2} \,\mathrm{d}\mu(\mathbf{x})}{\int_{\mathcal{X}} [y(\mathbf{x}) - \int_{\mathcal{X}} y(\mathbf{x}') d\mu(\mathbf{x}')]^{2} \,\mathrm{d}\mu(\mathbf{x})}.$$
(8)

Coefficient de prédictivité : estimateur arithmétique

$$\widehat{Q}_n^2 = 1 - \frac{\mathrm{ISE}_{\xi_n}(\mathbf{X}_m, \mathbf{y}_m)}{\mathrm{Var}_{\xi_n}(y(\mathbf{X}))} = 1 - \frac{\sum_{i=1}^n \left[y(\mathbf{x}^{(i)}) - \eta_m(\mathbf{x}^{(i)}) \right]^2}{\sum_{i=1}^n \left[y(\mathbf{x}^{(i)}) - \overline{y}_n \right]^2}, \quad (9)$$

où $\xi_n = \frac{1}{n} \sum_{i=1}^n \delta(\mathbf{x}^{(i)}), \quad \overline{y}_n = \frac{1}{n} \sum_{i=1}^n y(\mathbf{x}^{(i)}).$

- Cet n'estimateur n'utilise pas l'ensemble d'apprentissage pour estimer la variance.
- Une pondération intelligente de l'ISE (erreur quadratique intégrée) pourrait améliorer l'estimation.

EDF R&D

Au-delà des métriques de performance usuelles

Soit le processus d'erreur $\delta_m(\mathbf{x}) = y(\mathbf{x}) - \eta_m(\mathbf{x}) \sim GP(0, \sigma^2 K_{|m})$. Exprimons l'erreur quadratique de l'ISE à l'aide de ξ_n :

$$\overline{\Delta}^{2}(\xi_{n},\mu;\mathbf{X}_{m},\mathbf{y}_{m}) = \mathbb{E}\left[\left(\mathrm{ISE}_{\xi_{n}}(\mathbf{X}_{m},\mathbf{y}_{m}) - \mathrm{ISE}_{\mu}(\mathbf{X}_{m},\mathbf{y}_{m})\right)^{2}\right],$$
$$= \mathbb{E}\left[\left(\int_{\mathcal{X}}\delta_{m}^{2}(\mathbf{x})\,\mathrm{d}(\xi_{n}-\mu)(\mathbf{x})\right)^{2}\right],$$
$$= \sigma^{2}\,\mathrm{MMD}_{\overline{K}_{|m}}^{2}(\xi_{n},\mu).$$
(10)

Ici $\overline{K}_{|m}$ est défini comme $\overline{K}_{|m}(\mathbf{x}, \mathbf{x}') = 2 K_{|m}^2(\mathbf{x}, \mathbf{x}') + K_{|m}(\mathbf{x}, \mathbf{x})K_{|m}(\mathbf{x}', \mathbf{x}')$. Avec $\xi_n = \sum_{i=1}^n w_i \delta(\mathbf{x}^{(i)})$ [en cas d'uniformité $N^{-1} \sum_{i=1}^n \delta(\mathbf{x}^{(i)})$], l'idée est de trouver les poids $\mathbf{w}_n^* = (w_i^*)_{i=1}^n$ minimisant (10). Par calcul direct :

$$\mathsf{w}_n^* = \overline{\mathsf{K}}_{|m}^{-1}(\mathsf{X}_n)\mathsf{p}_{\overline{K}_{|m},\mu}(\mathsf{X}_n)\,,$$

avec
$$\mathbf{p}_{\overline{K}_{|m},\mu}(\mathbf{X}_n) = \left[\int \overline{K}_{|m}(\mathbf{x}^{(1)},\mathbf{x}) \,\mathrm{d}\mu(\mathbf{x}), \dots, \int \overline{K}_{|m}(\mathbf{x}^{(n)},\mathbf{x}) \,\mathrm{d}\mu(\mathbf{x})\right]^{\top}$$

Au-delà des métriques de performance usuelles

Coefficient de prédictivité : estimateur avec pondération optimale⁷

$$Q_{n*}^{2} = 1 - \frac{\sum_{i=1}^{n} w_{i}^{*} \left[y(\mathbf{x}^{(i)}) - \eta_{m}(\mathbf{x}^{(i)}) \right]^{2}}{\frac{1}{n} \sum_{i=1}^{n} \left[y(\mathbf{x}^{(i)}) - \overline{y}_{n} \right]^{2}}.$$
 (11)

- Les poids w^{*}_i ne dépendent pas du paramètre de variance du processus gaussien σ².
- On pourrait imaginer une pondération pour le dénominateur également.

^{7.} E. FEKHARI et al. "Model predictivity assessment : incremental test-set selection and accuracy evaluation". In : *Preprint* (2021).

Benchmark analytique

Problèmes intégrés au benchmark :

- Une fonction analytique.
- La variable d'entrée est aléatoire.
- Un ensemble d'apprentissage de taille *m* construit par LHS optimisé (3 tailles correspondant à un métamodèle de krigeage mauvais/bon/très bon)
- Une valeur de référence calculée pour chaque métamodèle sur un grand ensemble de test Monte-Carlo.

On compare différentes tailles d'ensemble test, méthodes de construction de l'ensemble et estimateurs du Q^2 .

Benchmark analytique

Problèmes intégrés au benchmark :

- Une fonction analytique.
- La variable d'entrée est aléatoire.
- Un ensemble d'apprentissage de taille *m* construit par LHS optimisé (3 tailles correspondant à un métamodèle de krigeage mauvais/bon/très bon)
- Une valeur de référence calculée pour chaque métamodèle sur un grand ensemble de test Monte-Carlo.

On compare différentes tailles d'ensemble test, méthodes de construction de l'ensemble et estimateurs du Q^2 .

Cas test analytique numéro 3 (« g-sobol » en dimension 8) : La loi μ est uniforme sur $\mathcal{X} = [0, 1]^8$ et $m \in \{15, 30, 100\}$.

$$f_3(\mathbf{x}) = \prod_{i=1}^8 \frac{|4x_i - 2| + a_i}{1 + a_i}, \quad a_i = i^2.$$

Benchmark analytique

Cas tests analytiques numéros 1 et 2 (dimension 2) où $x \in \mathcal{X} = [0, 1]^2$

Figure – $f_1(\mathbf{x})$ dans le cas test numéro 1 ; μ est uniforme ; $m \in \{8, 15, 30\}$ Figure – $f_2(\mathbf{x})$ dans le cas test numéro 2 ; μ est normale standard ; $m \in \{5, 15, 30\}$

Coefficient de prédictivité d'un mauvais modèle

Coefficient de prédictivité d'un bon modèle

Coefficient de prédictivité d'un très bon modèle

Résultats du benchmark analytique

Analyse et interprétation :

- L'ensemble test doit simultanément compléter l'ensemble d'apprentissage et imiter la loi visée.
- Les points support et le kernel herding donnent en général les meilleurs résultats.
- Le résultat du kernel herding est sensible au choix de noyau.
- Toutes les méthodes d'échantillonnage sont exposées au fléau de la dimension.
- Pondérer l'ensemble de test est de bon aloi en raison de son écart à l'ensemble d'entraînement.
- La validation croisée leave-one-out sous-estime en général le Q_2 , surtout quand m est petit.
- Après le test, le modèle peut éventuellement être amélioré en complétant l'apprentissage par l'ensemble test.

Bibliographie

- Y. CHEN, M. WELLING et A. SMOLA. "Super-samples from kernel herding". In : Proc. of the 26th UAI Conference. AUAI Press. 2010.
- [2] E. FEKHARI et al. "Model predictivity assessment : incremental test-set selection and accuracy evaluation". In : *Preprint* (2021).
- [3] Tadayoshi FUSHIKI. "Estimation of prediction error by using K-fold cross-validation". In : Statistics and Computing 21.2 (2011), p. 137-146.
- [4] S. MAK et V.R. JOSEPH. "Support points". In : Annals of Statistics (2018).
- [5] C.J. OATES. Minimum Discrepancy Methods in Uncertainty Quantification. Lecture Notes at ETICS Summer School. 2021.
- [6] B. SHANG et D. APLEY. "Fully-sequential space-filling design algorithms for computer experiments". In : Journal of Quality Technology 53 (2020), p. 1-24.